Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VOPROS_21-30_FIZIka.doc
Скачиваний:
84
Добавлен:
11.02.2015
Размер:
449.02 Кб
Скачать

Вопрос 22

Центральный максимум дифракционной картины, создаваемой источником So, лежит в направлении прямой, соединяющей S. Если первый узел дифракционной картины от 5, лежит в том же направлении, мы должны иметь aisint) - А. [1]

Размер пятна равен приблизительно ширине центрального максимума дифракционной картины от круглого отверстия. [2]

Согласно критерию Рэлея, изображения двух одинаковых точечных источников света еще можно видеть раздельно, если центральный максимум дифракционной картины от одного источника совпадает с первым минимумом дифракционной картины от другого. [3]

При узкой щели апертура коллиматорного объектива должна быть достаточно велика для того, чтобы объектив пропускал как центральный максимум дифракционной картины, так и достаточное число побочных максимумов; вследствие неизбежного дифрагми-рования высших дифракционных максимумов изображение щели окажется более или менее расширенным, и притом тем больше, чем меньше апертура коллиматор ного объектива. [4]

При узкой щели апертура коллиматорного объектива должна быть достаточно велика для того, чтобы объектив пропускал как центральный максимум дифракционной картины, так и достаточное число побочных максимумов; вследствие неизбежного дифрагмирования высших дифракционных максимумов изображение щели окажется более или менее расширенным, и притом тем больше, чем меньше апертура коллиматорного объектива. Обычно, однако, объективы спектрографа ( и коллиматорный, и камерный) делаются большего размера, чем поперечное сечение призменной системы. Поэтому главную роль в дифракционном расширении изображения щели играет ограничение, обусловливаемое призмой. [5]

Заметим, что в последнем решении мы пренебрегаем реализуемыми главными максимумами, попадающими в области максимумов, следующих за центральным максимумом дифракционной картины от одной щели. Можно показать, что интенсивность этих последующих максимумов мала

Вопрос 23

Свет — в физической оптике электромагнитное излучение, воспринимаемое человеческим глазом. В качестве коротковолновой границы спектрального диапазона, занимаемого светом, принят участок с длинами волн в вакууме380—400 нм (750—790 ТГц), а в качестве длинноволновой границы — участок 760—780 нм (385—395 ТГц)[1].

В широком смысле, используемом вне физической оптики, светом часто называют любое оптическое излучение[2], то есть такие электромагнитные волны, длины которых лежат в диапазоне с приблизительными границами от единиц нанометров до десятых долей миллиметра[3]. В этом случае в понятие «свет» помимо видимого излучения включаются как инфракрасное, так и ультрафиолетовое излучения.

СПЕКТРАЛЬНЫЙ СОСТАВ СВЕТА

Оптическая область спектра электромагнитные излучений состоит из трех участков: невидимых ультрафиолетовых излучений (длина волн 10—400 нм), видимых световых излучений (длина волн 400—750 нм), воспринимаемых глазом как свет и невидимых инфракрасных излучений (длина волн 740 нм — 1—2 мм).

Световые излучения, воздействующие на глаз и вызывающие ощущение цвета, подразделяют на простые (монохроматические) и сложные. Излучение с определенной длиной волны называют монохроматическим.

Простые излучения не могут быть разложены ни на какие другие цвета.

Спектр — последовательность монохроматических излучений, каждому из которых соответствует определенная длина волны электромагнитного колебания.

При разложении белого света призмой в непрерывный спектр цвета в нем постепенно переходят один в другой. Принято считать, что в некоторых границах длин волн (нм) излучения имеют следующие цвета:

390—440 – фиолетовый  440—480 - синий  480—510 – голубой  510—550 – зеленый  550—575 - желто-зеленый  575—585 - желтый  585—620 – оранжевый  630—770 – красный

Глаз человека обладает наибольшей чувствительностью к желто-зеленому излучению с длиной волны около 555 нм.

Различают три зоны излучения: сине-фиолетовая (длина волн 400—490 нм), зеленая (длина 490—570 нм) и красная (длина 580—720 нм). Эти зоны спектра являются также зонами преимущественной спектральной чувствительности приемников глаза и трех слоев цветной фотопленки. Свет, излучаемый обычными источниками, а также свет, отраженный от несветящихся тел, всегда имеет сложный спектральный состав, т. е. - состоит из суммы различных монохроматических излучений. Спектральный состав света —важнейшая характеристика освещения. Он непосредственно влияет на светопередачу при съемке на цветные фотографические материалы.

Один и тот же цвет может быть получен смешением различных излучений. Цвета излучений, имеющие различный спектральный состав, но визуальна воспринимающиеся одинаковыми, называются метамерными.

Метамерные цвета играют большую роль в практике цветных съемок, так как источники света, имеющие одинаковый цвет, но различный спектральный состав, могут давать заметные изменения цветовых соотношений на цветной пленке. Это важно учитывать при использовании смешанного освещения.

Фотопленки же в зависимости от назначения могут иметь наибольшую чувствительность к любым участкам спектра.

Слово «спектр» происходит от латинского «Спектр», которое означает «изображение». Исаак Ньютон пользовался им для выражения «цветное изображение». Вот цитата из его знаменитого трактата «Оптика»: «Я поместил в очень тёмной комнате у круглого отверстия, около трети дюйма шириной, в ставне окна стеклянную призму, благодаря чему пучок солнечного света, входящего в это отверстие, мог преломляться вверх к противоположной стене комнаты и образовать там цветное изображение спектра Солнца ». Так начинается доказательство ставшего очень популярным утверждения: «Солнечный свет состоит из лучей различной преломляемости».

       Значительно позднее слово «спектр» приобрело в науке ещё и другой смысл.

     Рассмотрим функцию вида

F (T) = C 1 Cos (ω 1 т + α 1 ) + С 2 соз (ω 2 т + α 2 ) + ... + C N соз (ω N т + α N ),

где С н , ω н , α н - постоянные величины. Множество пар ( ω 1 , C 1 ), ( ω 2 , C 2 ), ..., ( ω N , C N ) называется спектром функции F (T) . Число N может быть конечным или бесконечным.

     «Спектр функции» - понятие математическое. Существует ли связь между математическим и физическим понятием спектра? Опыт учит, что такая связь существует: характер спектра, как реально существующей цветной картины (спектра в физическом смысле), определяется характером спектра функции, описывающей световую волну, падающую на призму. Такое утверждение справедливо не только для световых, но и для волн любой другой природы (акустических, электрических и пр.).

     В чём заключается физический смысл открытия Ньютона? Действительно ли солнечный свет состоит из лучей различной преломляемости?

 На этот вопрос можно услышать такой ответ: «С помощью опытов с призмой Ньютон доказал, что солнечный свет состоит из монохроматических (синусоидальных) волн различного цвета».

    Абсурдность этого ответа очевидна. Нелепо думать, что в солнечном свете в самом деле есть монохроматические волны различного цвета. Солнечный свет - это хаотический процесс, в котором изменение электромагнитного поля происходит беспорядочным образом. Суть проблемы разъяснил выдающийся российский физик Л.И. Мандельштам.

     Рассмотрим для примера амплитудно-модулированное колебание

F (T) = (а + 2b потому Ω т) соз ω т.

     Здесь Ω - частота модуляции, ω - «несущая» частота, и б - постоянные величины. Такое колебание можно реализовать, например, на входе радиоприёмника, если радиостанция Работает На частоте со , а в радиостудии издаётся звуковой сигнал на частоте Ω.

      Можно видеть, что

(А + 2b потому Ω т) соз ω т = б соз (ω - Ω) т + A Cos ω т + б соз (ω + Ω) т.

     Что реально существует? Левая или правая часть этого тождества?

 Если мы принимаем этот сигнал с помощью радиоприёмника, мы не сможем сказать, что реально на самом деле: издаёт ли в радиостудии скрипач звук на частоте Ω (например, звук «ля») или работают Три генератора На частотах со - Ω,ω , ω + Ω. Чтобы это узнать, надо поехать на студию.

     Однако, если нас интересует, как действует амплитудно-модулированное колебание на набор остро настроенных колебательных контуров, наиболее целесообразным является представление, даваемое правой частью тождества. Здесь целесообразно говорить, что наше колебание состоит из трёх синусоидальных колебаний.

     Так в чём же истинное содержание опытов Ньютона? На основании изложенного можно сказать, что Ньютон доказал, что призма есть спектральный прибор, что она физически выделяет синусоидальные составляющие, физически осуществляет спектральное разложение света. Представление солнечного света в виде суммы синусоидальных волн является адекватным, когда мы имеем дело со спектральной аппаратурой. <\ Р>

     Тем самым может показаться, что опыты Ньютона с призмой не имеют фундаментального значения для физики. Это неверно. Опыты Ньютона показывают, что солнечный свет действительно несинусоидален, и позволяют узнать, каков именно спектр солнечного света. Из опытов Ньютона мы узнаём, что он является весьма широким сплошным спектром, в котором содержатся интенсивные слагаемые всех видимых цветов, семи цветов радуги -. Красного, оранжевого, жёлтого, зелёного, голубого, синего, фиолетового <\ р>

Разреше́ние — способность оптического прибора воспроизводить изображение близко расположенных объектов.

Угловое разрешение

Угловое разрешение — минимальный угол между объектами, который может различить оптическая система.

Способность оптической системы различать точки изображаемой поверхности например:

Угловое разрешение: 1′ (одна угловая минута, около 0,02°) соответствует площадке размером 30 см, различимой с расстояния в 1 км или одной печатной точке текста на расстоянии 1 м.

Разрешение оптических приборов принципиально ограничено дифракцией на объективе: видимые точки являются ничем иным, как дифракционными пятнами. Две соседние точки разрешаются, если минимум интенсивности между ними достаточно мал, чтобы его разглядеть. Для снятия зависимости от субъективности восприятия был введен эмпирический критерий разрешения Рэлея, который определяет минимальное угловое расстояние между точками

где θ — угловое разрешение (минимальное угловое расстояние), λ — длина волны, D — диаметр входного зрачка оптической системы (часто он совпадает с диаметром объектива). Учитывая чрезвычайную малость угла θ, в оптической литературе вместо синуса угла обычно пишут сам угол.

Коэффициент подобран так, чтобы интенсивность в минимуме между пятнами была равна примерно 0,75-0,8 от интенсивности в их максимумах — считается, что этого достаточно для различения невооруженным глазом.

Соседние файлы в предмете Физика