Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

02 BOPs / Woods D.R 2008 rules-of-thumb-in-Engineering-practice (epdf.tips)

.pdf
Скачиваний:
0
Добавлен:
12.03.2024
Размер:
3.47 Mб
Скачать

XContents

9.5Size Enlargement: Solids: Spherical agglomeration 302

9.6Size Enlargement: Solids: Disc Agglomeration 302

9.7Size Enlargement: Solids: Drum Granulator 303

9.8Size Enlargement: Solids: Briquetting 303

9.9Size Enlargement: Solids: Tabletting 304

9.10Size Enlargement: Solids: Pelleting 304

9.11Solids: Modify Size and Shape: Extruders, Food Extruders,

 

Pug Mills and Molding Machines 305

9.12

Solids: Solidify Liquid to Solid: Flakers, Belts and Prill Towers 323

9.13Coating 324

10

Process Vessels and Facilities 329

10.1Process Vessels 329

10.2Storage Vessels for Gases and Liquids 330

10.3Bins and Hoppers for Bulk Solids 330

10.4Bagging Machines 332

Appendix A: Units and Conversion of Units

334

 

 

 

Appendix B: Dimensionless Groups

361

 

 

 

 

Appendix C: Cox Charts – Vapor Pressures

374

 

 

 

Appendix D: Capital Cost Guidelines

376

 

 

 

 

D.1

Equipment Cost Correlations

376

 

 

 

D.2

Converting the FOB Cost into a Bare Module Cost

376

 

D.3

Converting FOB and L+M Costs into Total Fixed Capital

 

 

Investment Costs

378

 

 

 

 

 

D.4

Detailed Equipment Cost Data Based on Equipment Type

378

 

Section 1.4 Rules of Thumb about the Context for a Chemical Process:

 

Process Control Sensors

379

 

 

 

 

 

Section 2.1 Gas Moving: Pressure Service

380

 

 

 

Section 2.2 Gas Moving: Vacuum Service

382

 

 

 

Section 2.3 Liquid

383

 

 

 

 

 

 

Section 2.4 Gas-Liquid (Two-phase Flow)

385

 

 

 

Section 2.5 Pumping Slurries: Liquid–Solid Systems

385

 

 

Section 2.6 Solids

385

 

 

 

 

 

 

Section 2.7 Ducts and Pipes 387

 

 

 

 

Section 3.1 Drives

387

 

 

 

 

 

 

Section 3.2 Thermal Energy: Furnaces 388

 

 

 

Section 3.3 Thermal Energy: Fluid Heat Exchangers,

 

 

 

Condensers and Boilers

389

 

 

 

 

 

Section 3.4 Thermal Energy: Fluidized Bed (Coils in Bed)

390

 

Section 3.5 Thermal Energy: Static Mixers

390

 

 

 

Section 3.6 Thermal Energy: Direct Contact L–L Immiscible Liquids 390

 

 

 

 

 

 

 

 

Contents

 

XI

 

 

 

Section 3.7 Thermal Energy: Direct Contact G–L Cooling Towers

390

Section 3.8 Thermal Energy: Direct Contact G–L Quenchers

391

 

 

Section 3.9 Thermal Energy: Direct Contact G–L Condensers

391

 

Section 3.10 Thermal Energy: G–G Thermal Wheels and

 

 

 

Pebble Regenerators and Regenerators

391

 

 

 

 

 

Section 3.11 Thermal Energy: Refrigeration

391

 

 

 

 

Section 3.12 Thermal Energy: Steam Generation and Distribution

392

Section 3.13 High Temperature Heat Transfer Fluids 392

 

 

 

Section 3.14 Tempered Heat Exchange Systems

392

 

 

 

Section 4.1 Evaporation

392

 

 

 

 

 

 

 

 

Section 4.2 Distillation

393

 

 

 

 

 

 

 

 

Section 4.3 Freeze Concentration

395

 

 

 

 

 

 

Section 4.4 Melt Crystallization

396

 

 

 

 

 

 

Section 4.5 Zone Refining

396

 

 

 

 

 

 

 

 

Section 4.6 Solution Crystallization

396

 

 

 

 

 

 

Section 4.7 Precipitation

397

 

 

 

 

 

 

 

 

Section 4.8 Gas Absorption

397

 

 

 

 

 

 

 

Section 4.9 Gas Desorption/Stripping 397

 

 

 

 

 

Section 4.10 Solvent Extraction, SX

397

 

 

 

 

 

 

Section 4.11 Adsorption: Gas 399

 

 

 

 

 

 

 

Section 4.12 Adsorption: Liquid

399

 

 

 

 

 

 

Section 4.13 Ion Exchange

399

 

 

 

 

 

 

 

Section 4.14 Foam Fractionation 400

 

 

 

 

 

 

Section 4.15 Membranes and Membrane Configurations 400

 

 

 

Section 4.16 Membranes: Gas

400

 

 

 

 

 

 

 

Section 4.17 Membranes: Dialysis

400

 

 

 

 

 

 

Section 4.18 Membranes: Electrodialysis

400

 

 

 

 

Section 4.19 Membranes: Pervaporation

401

 

 

 

 

 

Section 4.20 Membranes: Reverse Osmosis, RO

401

 

 

 

Section 4.21 Membranes: Nanofiltration

401

 

 

 

 

 

Section 4.22 Membranes: Ultrafiltration, UF

401

 

 

 

Section 4.23 Microfiltration

401

 

 

 

 

 

 

 

Section 4.24 Chromatography

402

 

 

 

 

 

 

 

Section 5.1 Gas–Liquid

402

 

 

 

 

 

 

 

 

Section 5.2 Gas–Solid 402

 

 

 

 

 

 

 

 

 

Section 5.3 Liquid–Liquid

404

 

 

 

 

 

 

 

 

Section 5.3.1 Decanter

404

 

 

 

 

 

 

 

 

 

Section 5.3.2 Hydrocyclone

404

 

 

 

 

 

 

 

Section 5.3.3 Sedimentation Centrifuge

405

 

 

 

 

 

Section 5.4 Gas–Liquid–Liquid Separators 405

 

 

 

 

Section 5.5 Liquid–Solid: General Selection

405

 

 

 

 

Section 5.6 Dryers

405

 

 

 

 

 

 

 

 

 

 

Section 5.7 Screens for “Dewatering” 408

 

 

 

 

 

Section 5.8 Settlers

408

 

 

 

 

 

 

 

 

 

 

Section 5.9 Hydrocyclones

409

 

 

 

 

 

 

 

 

Section 5.10 Thickener

409

 

 

 

 

 

 

 

 

XII Contents

Section 5.11 CCD: Counter Current Decantation

410

 

 

Section 5.12 Sedimentation Centrifuges

410

 

 

 

Section 5.13 Filtering Centrifuge

410

 

 

 

 

Section 5.14 Filter

411

 

 

 

 

 

 

 

Section 5.15 Leacher

414

 

 

 

 

 

 

 

Section 5.16 Liquid–Solid: Dissolved Air Flotation, DAF

414

 

Section 5.17 Liquid–Solid: Expeller and Hydraulic Press

415

 

Section 5.18 Solid–Solid: General Selection 415

 

 

 

Section 5.19 Froth Flotation

415

 

 

 

 

 

Section 5.20 Electrostatic 415

 

 

 

 

 

 

Section 5.21 Magnetic

415

 

 

 

 

 

 

 

Section 5.22 Hydrocyclones

417

 

 

 

 

 

Section 5.23 Air Classifiers

417

 

 

 

 

 

Section 5.24 Rake Classifiers

 

417

 

 

 

 

 

Section 5.25 Spiral Classifiers

417

 

 

 

 

Section 5.26 Jig Concentrators

418

 

 

 

 

Section 5.27 Table Concentrators

418

 

 

 

 

Section 5.28 Sluice Concentrators

418

 

 

 

 

Section 5.29 Dense Media concentrators, DMS 418

 

 

Section 5.30 Screens

418

 

 

 

 

 

 

 

Sections 6.1 to 6.3 Consider Principles of Selecting Reactors

419

Section 6.4 Burner

418

 

 

 

 

 

 

 

Section 6.5 PFTR: Pipe/Tube, Empty Pipe for Fluid Systems

419

Section 6.6 PFTR: Static Mixer in Tube

420

 

 

 

Section 6.7 PFTR: Empty Pipe/Tube for Fluids and Solids 420

Section 6.8 PFTR: Empty Multitube, Nonadiabatic

420

 

 

Section 6.9 PFTR: Fixed Bed Catalyst in Tube or Vessel: Adiabatic 420

Section 6.10

PFTR: Multibed Adiabatic with Inter-bed

Quench or Heating 420

Section 6.11

PFTR: Fixed Bed with Radial Flow 421

Section 6.12

PFTR: Multitube Fixed Bed Catalyst

or Bed of Solid Inerts: Nonadiabatic

421

 

Section 6.13 PFTR: Bubble Reactor

421

 

Section 6.14 PFTR: Spray Reactor and Jet Nozzle Reactor 422

Section 6.15 PFTR: Trays 422

 

 

 

Section 6.16 PFTR: Packing 422

 

 

Section 6.17 PFTR: Trickle Bed

422

 

 

Section 6.18 PFTR: Monolithic

422

 

 

Section 6.19 PFTR: Thin Film

422

 

 

Section 6.20 PFTR: Scraped Surface Reactor

423

Section 6.21 PFTR: Multiple Hearth

423

 

Section 6.22 PFTR: Traveling Grate

423

 

Section 6.23

PFTR: Rotary Kiln

423

 

 

Section 6.24

PFTR, Shaft Furnace 423

 

Section 6.25

PFTR, Melting Cyclone Burner

424

Section 6.26

PFTR via Multistage CSTR 424

 

 

 

 

 

 

 

 

 

 

Contents

 

XIII

Section 6.27 STR: Batch (Backmix)

424

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section 6.28 STR: Semibatch

425

 

 

 

 

 

 

 

 

Section 6.29 CSTR: Mechanical Mixer (Backmix)

 

425

 

 

 

 

Section 6.30 STR: Fluidized Bed (Backmix)

425

 

 

 

 

 

 

Section 6.31 TR: Tank Reactor

 

425

 

 

 

 

 

 

 

Section 6.32 Mix of CSTR, PFTR with Recycle

426

 

 

 

 

Section 6.33 STR: PFTR with Large Recycle

426

 

 

 

 

 

Section 6.34 Reaction Injection Molding and Reactive Extrusion

426

Section 6.35 Reactive Distillation, Extraction, Crystallization

427

 

 

Section 6.36 Membrane Reactors

427

 

 

 

 

 

 

 

Section 6.37 Liquid Piston Reactor

427

 

 

 

 

 

 

 

Section 7.1 Liquids

427

 

 

 

 

 

 

 

 

 

 

 

Section 7.2 Liquid–Liquid

428

 

 

 

 

 

 

 

 

 

Section 7.3 Liquid–Solid

428

 

 

 

 

 

 

 

 

 

 

Section 7.3.1 Solids Suspension

428

 

 

 

 

 

 

 

Section 7.3.2 Solids Dispersion

428

 

 

 

 

 

 

 

Section 7.3.3 Solids Dissolving

428

 

 

 

 

 

 

 

Section 7.3.4 Solids Flocculating 429

 

 

 

 

 

 

 

Section 7.4 Dry Solids 429

 

 

 

 

 

 

 

 

 

 

Section 8.1 Gas in Liquid (Foams)

429

 

 

 

 

 

 

 

Section 8.2 Liquid in Gas (Sprays)

430

 

 

 

 

 

 

 

Section 8.3 Liquid–Liquid

430

 

 

 

 

 

 

 

 

 

Section 8.4 Cell Disintegration

430

 

 

 

 

 

 

 

Section 8.5 Solids: Crushing and Grinding

430

 

 

 

 

 

 

Section 9.1 Size Enlargement: Liquid–Gas: Demisters 432

 

 

 

Section 9.2 Size Enlargement: Liquid–Liquid: Coalescers

432

 

 

Section 9.3 Size Enlargement: Solid in Liquid:

 

 

 

 

 

 

Coagulation/Flocculation

432

 

 

 

 

 

 

 

 

 

 

Section 9.4 Size Enlargement: Solids: Fluidization

432

 

 

 

 

Section 9.5 Size Enlargement: Solids: Spherical Agglomeration

432

Section 9.6 Size Enlargement: Solids: Disc Agglomeration 433

 

 

Section 9.7 Size Enlargement: Solids: Drum Granulator

433

 

 

 

Section 9.8 Size Enlargement: Solids: Briquetting

433

 

 

 

 

Section 9.9 Size Enlargement: Solids: Tabletting

 

433

 

 

 

 

Section 9.10 Size Enlargement: Solids: Pelleting

 

433

 

 

 

 

Section 9.11 Solids: Modify Size and Shape:

 

 

 

 

 

 

 

Extruders, Food Extruders, Pug Mills and Molding Machines

433

Section 9.12 Solids: Solidify Liquid to Solid:

 

 

 

 

 

 

 

Flakers, Belts and Prill towers

 

434

 

 

 

 

 

 

 

Section 9.13 Coating

434

 

 

 

 

 

 

 

 

 

 

 

Section 10.1 Process Vessels

434

 

 

 

 

 

 

 

 

Section 10.2 Storage Vessels for Gases and Liquids 435

 

 

 

 

Section 10.3 Bins and Hoppers for Bulk Solids

436

 

 

 

 

Section 10.4 Bagging Machines

436

 

 

 

 

 

 

 

Index 437

Preface

Brewster’s Dictionary of Phrase and Fable defines a rule of thumb as “a rough guestimate measure, practice or experience, as distinct from theory, in allusion to the use of the thumb for rough measurements. The first joint of the adult thumb measures almost exactly 1 inch (2.5 cm)”.

Engineers need such rules of thumb to guide decisions, set goals, check results and to help answer such questions as:

xWhen might I use something?

xHow do I obtain an approximate answer?

xHow might I obtain an approximate estimate of the cost?

xWhat is reasonable operating know-how?

xWhat might I do if something goes wrong?

Some believe that providing a collection of rules of thumb is dangerous – dangerous because engineers might forsake the fundamentals and place too much emphasis on order-of-magnitude estimates. However, I have found for problem solving in industry – for design, for process improvement and for trouble shooting – rules of thumb are not dangerous; they are essential. From research on problem solving, for example, we realize that skilled problem solvers create a rich internal representation of the problem. During the creation of that representation, problem solvers ask many What if? questions. They solve a simplified version of the problem. They approximate. Rules of thumb are needed to do this well. As we problem solve, research has found that we monitor our thought processes frequently; we check and double check often. To do this well requires us to have a rich set of rules of thumb. When we obtain an answer to a problem, skilled problem solvers check that the answer sounds reasonable and that it answers the initial problem. We use rules of thumb to do this. Rules of thumb are needed by working professionals.

This book is unique in its consistency in terminology and units, in its extensive cross referencing, in the range of process equipment considered, in the depth and breadth of coverage for each piece of equipment, in the coding of the source of the rule of thumb, in its synthesis of the information into convenient and easy- to-use formats and because it considers issues not usually considered in books

Rules of Thumb in Engineering Practice. Donald R. Woods

Copyright c 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-31220-7

Preface XV

about rules of thumb: career skills, how to function effectively and the people side of engineering.

This book is unique in its consistency in terminology and units. Tower or column? motionless mixer or static mixer? tray or plate?- these are just some of the terms that are used interchangeably when discussing process equipment. In this book consistent use of terms has been applied. The SI units of measurement are used throughout the text.

This book is unique in its extensive cross referencing. Some pieces of equipment are used for many different purposes. For example, fluidized beds are selected, sized and operated as heat exchangers, dryers, reactors, coaters and agglomerators. The details are given for each specific application with cross referencing to lead to other uses and rules of thumb. This cross referencing is included in each pertinent section and in the lengthy index.

This book is unique in the range of process equipment considered. Books on rules of thumb often focus on the familiar equipment: centrifugal pumps, shell and tube exchangers, and distillation columns, few consider solids processing equipment; and solid–solid separators are rarely discussed. In this book I have tried to consider an extremely broad range of over 350 types of equipment, especially some of the lesser-known equipment, such as prilling, flakers, electrostatic separators, magnetic separators, foam fractionation, expellers, zone refiners and multiple hearth furnaces.

This book is unique in the depth and breadth of coverage for each piece of equipment. Wherever possible, for each piece of equipment I have tried to include five dimensions important for the practising engineer: the area of application (or when to use a particular type of equipment); guidelines for sizing; an approximate capital cost including hard-to-locate installation factors; principles of good practice and approaches for trouble shooting. More specifically:

xArea of Application: how or when to select: when would you use this piece of equipment? What is the usual available size range?

xGuidelines: how to size: rules of thumb and short cut sizing for estimating the size of the equipment. In general these work within a factor of ten but usually a factor of four.

xCapital Cost Guidelines: Costs should be included with any rules of thumb because costs are such vital information to engineering practice. But these are guidelines – not data! The cost estimates given here are ball park ideas. The guideline FOB cost is in US $ for CEPCI = 1000. The L+M* factors are included because few published data are available. Some of these may be shown as a range, for example, 2.3–3. This means that values have been reported in this range and no recommended value is available at this time. The L+M* factor includes the FOB cost for carbon steel and excludes taxes, freight, delivery, duties and instruments, unless instruments are part of the package. The * is added to remind us that the instrumentation material and labor costs have been excluded, whereas most L+M values published in the 60s,

XVI Preface

70s and 80s included the instrumentation material and labor costs. The alloy corrections are given so that L+M for carbon steel can be reduced appropriately for the alloy used in the equipment. For some unit operations the equipment is built of concrete or is a lagoon. For such equipment the reported cost is the Physical Module, PM cost, or the FOB plus L+M* plus instruments plus taxes and duties. The cost excludes offsite, home office expense, field expense and contractor’s fees and contingencies.

xGood Practice: suggestions for good operability and suggestions for sustainability, waste minimization, safety and environmental concerns.

xTrouble Shooting: the symptom is given “Temperature i design” followed by a prioritized list of possible causes separated by “/”. Sometimes it is convenient to identify a cause and list, in turn, the sub-causes until the root cause is listed. For example, [ fouling]* might be listed as a “cause” but what causes the fouling? Fouling is not the root cause. Possible root causes are given in a separate listing under [Fouling]*. Such documentation is required because (i) we need to keep looking for causes until we find one that we can measure or change, and (ii) sometimes, with extruders, for example, the cause is because the temperature is too hot or too cold. We need guidance as to what is really the cause when the temperature is too hot and what is really the root cause when the temperature is too cold.

This book is unique because it attempts to code the source of the rule of thumb. This is important because not all rules of thumb arise from the same source. Some are a generalization of fundamentals, for example, the friction factor for turbulent flow is about 0.005; 1 kg of steam evaporates about 5 kg of organic. Such rules of thumb will not change over time. Some are based on safety considerations; these may change as we learn more about hazards and safe operation. Some are developed from an economic analysis, but as the relative costs change then the rule of thumb will change. For example, the “economic velocity” for pumping liquids is about 1 m s–1; but this will change as the relative costs of power, labor and materials change. Some rules of thumb are based on insurance policies, or the law. Such heuristics will change as policies and laws change. For example, in 1961 in the UK the insurance costs for a polymerizer to which live steam was attached were much, much higher than if hot water was attached directly to the vessel. So rules of thumb about good practice were developed in that industry to account for this. Coding is needed to remind us of the basis of the rule of thumb.

This book is unique in its synthesis of the information. This is not a convenient reproduction of material taken from different sources. Information from different sources is compared and contrasted, gaps are filled, and the information is presented in forms useful to the sizing, selecting and operation of the equipment. For

Preface XVII

example, sizing maps, given for pumps, heat exchangers, columns and reactors, illustrate pictorially how different factors affect the decisions. For filtering centrifuges, articles often describe which filtering centrifuge to select to handle slurries described by such qualitative terms as “fast filtering”, “medium filtering” and so on. But the quantitative design parameters for filtering centrifuges are the cake build-up rate, the intrinsic permeability and the particle size. Table 5.2, for example, relates “qualitative terms” to the “quantitative design parameters”. A similar synthesis and clarification is done, in Table 5.3, relating “qualitative” measures of filtration to such quantitative design parameters as rate of cake formation, filtrate rate, and cake resistance. The density-weighted velocity is important in sizing tray columns, KO pots, absorbers and demisters. Table 4.1 synthesizes and summarizes the values for these different applications. Corrosion, foam formation, stable emulsion formation and fouling are concerns that affect the successful operation of many different types of equipment. These concerns are addressed consistently, where needed, throughout the book. Interfacial and surface engineering aspects are included in the descriptions of pertinent unit operations. The selection criteria for reactors are synthesized in the series of tables in Chapter 6. Data are given for estimating the residence times in different reactors and for different types of reactions.

This book is unique because it considers issues not usually considered in books about rules of thumb. Most books and articles about rules of thumb focus on processing equipment but effective engineers also need to communicate, work effectively in teams, solve problems and lead. Rules of thumb are summarized for “systems” thinking and for “career skills” such as problem solving, creativity, leadership, entrepreneurship and e-business.

This book uses a format similar to my other books: Process Design and Engineering Practice and Successful Trouble Shooting for Process Engineers and the section on Design that I coauthored in Marcel Dekker’s “Handbook for Chemical Engineers” Another uniqueness is the information on residence times for reactions. Data from industrial reactors were used to create Figs. 6.5 to 6.7. These show how the residence time for reaction varies with temperature, phase and the heat of reaction. To my knowledge, this is the first time such an analysis has been presented in the open literature. Other detailed information is given on how

the type of reaction can be used to estimate the residence time.

Unique also is the extensive analysis of dispersed phase systems, whether these are gas bubbles in liquids, sprays, a liquid–liquid dispersion or a liquid–solid system. Characteristics of different contactors for such systems are summarized in Tables 1.1 to 1.3 and Figs. 1.1 and 1.2.

To aid in retrieving information, an extensive index is given.

Chapter 1 gives rules of thumb for physical and thermal properties, corrosion and process control; for engineering decisions related to batch versus continuous processing, the characteristics of heterogeneous phase contacting, economics, problem solving, goal setting, decision making, thermal pinch, systems thinking, process design, process improvement, trouble shooting and environmental and

XVIII Preface

safety issues. Rules of thumb are included about communication, listening, interpersonal skills, team work, performance review, leadership, intrepreneurship, entrepreneurship, e-business and self management. The section on heterogeneous phase contacting includes figures and tables that compare area/volume, oxygen transfer rates and other key characteristics of a wide range of contacting devices for gas–liquid, liquid–liquid and particulate systems.

Chapter 2 considers equipment for transportation: gases, liquids, fluid mixtures and solids

Chapter 3 addresses energy exchange equipment. This includes drives, motors and turbines as well as equipment for thermal energy exchange.

Chapter 4 describes equipment to separate homogeneous phases; these range from evaporators and distillation to membrane processes.

Chapter 5 focuses on equipment for the separation of heterogeneous phases. The chapter starts with a convenient general selection guide. More specific guides are given for liquid–solid separations, Section 5.5, and for solid–solid separations, Section 5.18.

Chapter 6 starts with criteria for the selection of a reactor configuration. Data are given for sizing reactors. Then the details are given for over 30 reactor configurations.

Chapter 7 considers mixing (of gases, liquids, mixtures and solids).

Chapter 8 explores size reduction operations, such as foams, sprayers, emulsification, crushing and grinding and cell disintegration.

Chapter 9 summarizes key information about equipment to increase or change the size of drops, bubbles and particles: demisters, coalescers, flocculators, spray dryers, fluidized beds, agglomeration, pelletizing, extrusion, flakers, prilling and coating.

Chapter 10 considers process and storage vessels, bins and hoppers and bagging machines.

This book is a synthesis and summary of experience I have gained since 1955. In the seven companies for whom I worked before coming to McMaster University, I learned much from the late Don Ormston and Ted Tyler of Distiller’s Company Ltd., Saltend, UK; Stan Chodkiewicz, Polysar, Sarnia, J.Mike F. Drake, British Geon Ltd., Barry, South Wales; Chuck Watson and the late Ed Crosby from the University of Wisconsin; the late Reg Clark, Queen’s University helped me immensely. They started me on my search for and synthesis of sound estimating procedures and guidelines for good judgment. I have received ongoing help from my colleagues at McMaster. In particular, the late R.B. Anderson, Archie Hamielec, Terry Hoffman, Cam Crowe, Joe Wright, Jim Dickson, Phil Wood, Les Shemilt, Marios Tsezos, Neil Bayes, Malcolm Baird, John Vlachopoulos, Raja Ghosh, the late Keith Murphy, Jack Norman, Tom Marlin, Bob Pelton, John Brash, Brian Ives, Gord Irons, W.K. Lu, Carlos Filipe and Doug Keller. Others who willingly shared their expertise and contributed to this book include Ken Hester, Rio Algom; Bob McAndrew and Glen Dobby, University of Toronto; G.S. Peter Castle and Maurice Bergougnou, University of Western Ontario;

Preface XIX

R.E. Edmunston and William K. Taylor, CIL Courtright, Ontario; Peter L. Silveston, University of Waterloo; Jud King and Scott Lynn, University of California, Berkeley; Ian Doig, University of New South Wales; Pierre Cote, Zenon Environmental; Doug R. Winter, Universal Gravo-plast, Toronto; V.I. Lakshmanan, Ontario Research Foundation, Sheridan Park; Ed Capes, NRC, Ottawa; Peter Clark, Epstein Engineering; Lyle Albright, Purdue University; Paul Belter, The Upjohn Co., Kalamazoo, MI; Jim Couper, University of Arkansas; Gary Powers and Art Westerberg, Carnegie Mellon University; John C. Berg, University of Washington; Jim Douglas, University of Massachusetts; Bill Cotton, Dupont of Canada, Ltd; Kingston; Jesse Shen, East China University for Science and Technology, Shanghai; Emil Nenninger, Hatch and Associates; Graham Davies, UMIST, UK; Don Dahlstrom, University of Utah, Vince Grassi, Air Products and Chemicals Inc., Allentown, PA; Barry Jackson, Queen’s University, Kingston; John Bell, of Waterdown; Chip Howat, University of Kansas; Andrew Douglas, Bartek Chemicals, Stoney Creek, ON; Darsh Wasan, IIT; Craig Boogers, T.H. Solutions, Inc., Burlington; Doug C. Pearson, DDC Technical Consulting, Parry Sound; Luis J. Rodriguez, Downstream Oil Company, Waterdown and Ken Higginson, Waterdown. Special thanks to Murray Moo-Young, University of Waterloo and Jack Hopper, Lamar University, Beaumont, TX for their input on reactors. I appreciate the feedback from the students at McMaster University, class of 2006.

Don Woods, Waterdown, January 2006