Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Свидунович_Материаловедение_для ХТОМ

.pdf
Скачиваний:
121
Добавлен:
26.03.2015
Размер:
19.19 Mб
Скачать

Таблица 13.6. Свойства термопластичных пластмасс

* По ГОСТ 4647-80.

Таблица 13.7. Свойства теплостойких полимеров

*' В скобках приведены значения свойств ударопрочного полиформальдегида. *2 Степень кристаллизации < 50 %.

*3Из группы ароматических аморфных полиимидов с высокой теплостойкостью.

Таблица 13.8. Свойства полиамидов

'Поглощение H2O за 24 ч.

Полиамиды имеют tK > 200 ° С, а допустимые температуры продолжительной эксплуатации изделий из них достигают 150 ° С. Повышенная прочность и сопротивление абразивному изнашиванию объясняются сильным межмолекулярным взаимодействием благодаря водородным связям. Эти связи возникают между амидными группами (-CO-NH-) в соседних молекулах. Полиамиды имеют малый коэффициент трения в паре со сталью

ипо комплексу свойств нашли применение как антифрикционные материалы узлов трения. Полиамиды, содержащие в молекулах бензольные кольца, имеют повышенную жесткость.

Ацетали и их сополимеры без наполнителей выделяются повышенной прочностью и жесткостью. Эти полимеры стойки против растрескивания и изнашивания. Они достаточно технологичны для производства отливок и экструдированных изделий. Полиформальдегид в паре со сталью имеет коэффициент трения 0,33, который почти не изменяется при нагреве до 100 ° С.

При производстве изделий и их эксплуатации полиформальдегид нельзя нагревать выше 218 ° С, так как в противном случае наступает быстрое разложение полимера, сопровождающееся выделением формальдегида.

Поликарбонаты уникальны своим высоким сопротивлением удару. Их ударная вязкость (250 - 500 кДж/м2) близка ударной вязкости среднеуглеродистых сталей. Недостатком поликарбонатов является склонность к растрескиванию, чему способствуют растворители (даже их пары) и напряжения. При 20 - 25 ° С критическое напряжение равно 14 МПа при постоянной нагрузке

и28 МПа в случаях, когда нагрузка действует периодически.

Полифениленоксид хорошо совмещается с полистиролом, поэтому для облегчения переработки используется в виде смесей с ним. Температура стеклования смеси имеет промежуточное значение между tCT полистирола (100° С) и tCT полифениленоксида (208° С).

Полиимиды выделяются высокой теплостойкостью и по сравнению с теплостойкими кремнийорганическими полимерами имеют прочность, почти вдвое превышающую прочность таких, например, термопластов, как поливинилхлорид и полистирол.

Механические свойства термореактивных пластмасс

Термореактивные пластмассы (реактопласты) получают на основе эпоксидных, полиэфирных, полиуретановых, фенолоформальдегидных и кремнийорганических полимеров. Пластмассы применяют в отвержден-ном виде; они имеют сетчатую структуру и поэтому при нагреве не плавятся, устойчивы против старения и не взаимодействуют с топливом и смазочными материалами. Термореактивные пластмассы способны лишь набухать в отдельных растворителях, водостойки и поглощают не более 0,1 - 0,5% Н20.

Все полимеры при отверждении дают усадку; она минимальна у эпоксидных полимеров (0,5 - 2%) и особенно велика у полиэфиров (~ 10 %). Для уменьшения усадки и повышения прочности используют наполнители и регулируют условия отверждения. Отверждение эпоксидных и полиэфирных пластмасс не связано с выделением побочных веществ, поэтому при

изготовлении изделий нет надобности в больших давлениях. Эти пластмассы пригодны для изделий больших размеров. Если при отверждении выделяются низкомолекулярные вещества (например, у фенопластов), то изделия получают под давлением во избежание образования вредной пористости и других дефектов. При переработке фенолоформальдегидных и некоторых других пластмасс необходимые давления велики — в пределах 10 - 100 МПа, поэтому размеры изделий ограничены техническими возможностями прессового оборудования. Все термореактивные полимеры после отверждения имеют низкую ударную вязкость и поэтому используются с наполнителями. Преимуществом наполненных термореактивных пластмасс является большая стабильность механических свойств и относительно малая зависимость от температуры, скорости деформирования и длительности действия нагрузки. Они более надежны, чем термопласты. При испытаниях на растяжение материалы разрушаются без пластического течения и образования шейки (см. рис. 13.15,6). Верхняя граница рабочих температур реактопластов определяется термической устойчивостью полимера или наполнителя (меньшей из двух). Несмотря на понижение прочности и жесткости при нагреве, термореактивные пластмассы имеют лучшую несущую способность в рабочем интервале температур, и допустимые напряжения (15 - 40 МПа) для них выше, чем для термопластов. Важными преимуществами термореактивных пластмасс являются высокие удельная жесткость Е/(рд) и удельная прочность <Уъ/(рд). По этим показателям механических свойств реактопласты со стеклянным волокном или тканями превосходят многие стали, сплавы титана и сплавы алюминия. Термореактивные порошковые пластмассы наиболее однородны по свойствам. Такие пластмассы хорошо прессуются и применяются для наиболее сложных по форме изделий. Недостаток порошковых пластмасс — пониженная ударная вязкость (табл. 13.9).

Таблица 13.9. Свойства термореактивных пластмасс

* По ГОСТ 4647-80.

Волокниты — это пластмассы, в которых наполнителем являются волокна. Они отличаются повышенной прочностью, а главное — ударной вязкостью. Благодаря волокнам ударная вязкость превышает 10 кДж/м2, а при использовании стеклянного волокна достигает 20 - 30кДж/м2. Волокниты, наполненные асбестовым волокном, сочетают теплостойкость (до 200 ° С) с высоким коэффициентом трения в паре со сталью и поэтому применяются в тормозных устройствах для обкладок и колодок. Изделия из волокнитов прессуют при повышенных давлениях. Из-за низкой текучести материала применение волокнитов ограничено изделиями простой формы.

Особую группу волокнитов образуют материалы с параллельно расположенными волокнами наполнителя. Такую структуру имеют изделия, полученные намоткой стеклянного волокна. Ориентация волокон служит причиной анизотропии. Вдоль волокон прочность максимальна, а в поперечном направлении — минимальна.

Слоистые пластики представляют собой группу самых прочных и универсальных по применению конструкционных пластмасс. Листовые наполнители, уложенные слоями, придают материалам анизотропность.

Свойства слоистых пластиков зависят от вида полимера, наполнителя, способа укладки листов и объемного соотношения между полимером и наполнителем. По виду наполнителя слоистые пластики разделяются на следующие виды: текстолиты — с хлопчатобумажными тканями; гетинаксы

— с бумагой; древесно-слоистые пластики — с древесным шпоном; стеклотекстолиты — с тканями из стеклянного волокна. Наименее прочными являются гетинаксы, максимальную прочность имеют стеклотекстолиты. Из всех слоистых пластиков текстолиты отличаются самым прочным сцеплением между полимером и наполнителем и лучше поглощают вибрацию.

Обычно слоистый пластик содержит около 50 % полимера; при меньшем его содержании материал более экономичен, но зато неводостоек и менее прочен.

Способ укладки листов в слоистой пластмассе особенно важен, когда сами листы наполнителя неоднородны по структуре и свойствам. Для древесного шпона различие в прочности вдоль и поперек волокон общеизвестно. В тканях наибольшую однородность свойств обеспечивает полотняное переплетение. Здесь нити основы и нити утка равномерно переплетены между собой. В кордной ткани, напротив, прочность максимальна вдоль нитей основы, а нити утка расположены редко и предназначены только для сплетения основы.

Стеклянное волокно не так эластично, как полимерное или хлопчатобумажное. Стеклоткань полотняного переплетения в стеклотекстолитах обеспечивает минимальную прочность, так как при частых перегибах волокна получается больше обрывов. Наивысшая прочность (правда, в одном направлении) получается при укладке слоев стеклянного волокна в соотношении 10 : 1, т.е. в 10 слоях волокна имеют одинаковое направление, а в одиннадцатом — направление волокон изменяется на 90°. Временное

сопротивление такого материала 850 — 950 МПа. При укладке такого же наполнителя в соотношении 1:1, т.е. направления волокон в соседних слоях перекрещиваются под углом 90°, прочность уменьшается вдвое. При любом способе укладки волокна или ткани материалы анизотропны и степень анизотропии составляет 2-10.

Гетинаксы в зависимости от свойств составляющих применяются как электроизоляционные или строительно-декоративные материалы для облицовки производственных помещений, салонов самолетов и т.п. Текстолит используют для разнообразных средненагруженных трущихся деталей, включая зубчатые колеса и кулачки. Среди достоинств текстолита — сопротивление износу, отсутствие схватывания со стальными деталями.

Стеклотекстолиты сочетают малую плотность (1,6 - 1,9 г/см3) с высокой прочностью и жесткостью. Наивысшую прочность обеспечивает эпоксидная связка, а минимальную — кремнийорганические полимеры. Стеклотекстолиты по способности поглощать вибрации превосходят стали, сплавы титана и сплавы алюминия и поэтому имеют хорошую выносливость при переменных нагрузках. По тепловому расширению эти материалы близки к сталям.

При нагреве полимерная связка разупрочняется быстрее волокна, поэтому предел прочности при сжатии или сдвиге снижается быстрее, чем временное сопротивление.

Слоистые пластики со стеклянным или полимерным волокном в течение десятков секунд выдерживают температуру свыше 3000° С. В поверхностных слоях разрушается полимер, оплавляется наполнитель и образуется тугоплавкий кокс, который защищает более глубокие слои материала. Эта особенность лежит в основе применения пластмасс в качестве теплозащитных материалов.

Термореактивные полимеры используют при изготовлении оболочковых форм для отливок, различной технологической оснастки, абразивного инструмента.

РЕЗИНЫ

Резинами называются эластичные многокомпонентные материалы на основе каучука. Эластичность резин, т.е. способность к очень большим (500 - 800 %) обратимым деформациям, является наиболее ценным их свойством. Резины имеют очень низкий модуль упругости (Е = 1... 10 МПа) и легко деформируются под действием относительно небольших напряжений; их коэффициент Пуассона близок к 0,5.

Механические свойства резин определяют при испытаниях на растяжение. Для резин характерно σв = 10 ... 60 МПа и очень большое относительное удлинение в момент разрыва образцов — до 900 - 1000 % Трещины в резинах распространяются медленно; сопротивление раздиру (ГОСТ 262-93) изменяется от 20 до 150 кН/м.

Таблица 13.10. Механические свойства резин

Упрочнение резин при растяжении обусловлено выпрямлением молекул каучука, ограничением возможности дальнейшей высокоэластичной деформации, а также их кристаллизацией. Кристаллизация в резинах нежелательна, так как из-за нее уменьшается эластичность. После снятия нагрузки кристаллы «плавятся», и эластичность восстанавливается через некоторое время. Наиболее склонны к кристаллизации резины на основе натурального каучука, близкого к нему изопренового, а также хлоропренового каучуков. После разрыва образца имели остаточное относительное удлинение 20 - 30 %, т.е. менее 5 % максимального удлинения перед разрывом. Это остаточное удлинение в основном является необратимой деформацией из-за разрывов поперечных связей и проскальзывания макромолекул, чем меньше остаточное удлинение, тем выше качество резины.

Резиновые изделия при эксплуатации испытывают напряжения, которые значительно меньше временного сопротивления. Под нагрузкой часть подводимой к изделию механической энергии тратится на преодоление межмолекулярного взаимодействия и преобразуется в тепловую. Гистерезисные потери возникают при однократном цикле нагружения.

Особое значение они приобретают при многократном циклическом нагружении (рис. 13.17). В массивных изделиях, когда теплоотвод от внутренних участков затруднен из-за невысокой теплопроводности резины, ее температура повышается на 100 ° С и более. Гистерезисный разогрев резины сопровождается снижением ее прочности и усилением окислительного старения. Как следствие, сокращается срок эксплуатации изделий, а в некоторых случаях возможно и их разрушение. Гистерезисные потери обеспечили использование резины в качестве основного материала для амортизаторов. Энергия вибраций, сотрясений или ударов поглощается при деформировании резиновых элементов амортизационных устройств.

Резины изготавливают на основе натуральных и синтетических каучуков с температурами стеклования ниже 0° С. Основной операцией превращения каучука в резину является вулканизация, когда линейные молекулы термопластичного каучука соединяются поперечными химическими связями. Молекулярная структура резины представляет собой объемную сетку, способную к высокоэластичным деформациям благодаря невысокой плотности поперечных связей. По сравнению с каучуком резина прочнее, не склонна к необратимым деформациям под нагрузкой и не растворяется, а лишь набухает в тех растворителях, в которых растворим каучук.

У резин общего назначения интервал рабочих температур составляет - 50 ... + 150 ° С. При нагреве выше 150° С резина быстро разрушается, а при охлаждении ниже — 50 ° С теряет эластичность. Для более низких и более высоких температур разработаны специальные резины — морозостойкие и теплостойкие соответственно.

Особенностью строения большинства каучуков являются двойные:

связи между атомами углерода в главной цепи молекул — В зависимости от расположения ближайших групп атомов по

отношению к двойным связям возможны различные конфигурации молекул каучука (рис. 13.18).

При одинаковом химическом составе изомеры каучука различаются гибкостью, т.е. по числу возможных конформаций одни изомеры значительно превосходят другие. Например, натуральный каучук (1,4-цис) отличается от гуттаперчи (1,4-транс) повышенной эластичностью.

Сохранение основного множества двойных связей в объемной молекулярной сетке резины является причиной ее быстрого старения. Особенно разрушительно действует озон, старение ускоряется при нагреве и при одновременном действии окислителей и механических напряжений. В ре-

зультате старения резина с поверхности покрывается сеткой трещин. В частности, при знакопеременном цикле нагружения резина одновременно подвергается окислению и механическому разрушению. Разрывы связей в молекулах каучука и рекомбинация осколков молекул уменьшают эластичность резины и сопровождаются постоянным растрескиванием ее поверхностных слоев.

В зависимости от сопротивления старению резины подразделяют на три группы: стойкие (не содержащие двойных связей); умеренно-стойкие и нестойкие.

Стойкими являются резины на основе этиленпропиленовых, кремнийорганических и фторкаучуков, а также хорсульфированного полиэтилена. Они нечувствительны к озону ни при его равновесной концентрации в воздухе, равной (2 — 4) • 10 _6 %, ни при увеличении этой концентрации до 0,1 - 1,0 %. Эффект старения становится заметным у них лишь через годы.

К умеренностойким относятся резины на основе хлоропренового и бутилового каучуков и тиоколов. В этих материалах трещины начинают развиваться после нескольких месяцев выдержки.

Нестойкими являются резины общего назначения, которые производят в массовом количестве. Это натуральная резина и резины на основе изопреновых, бутадиен-стирольных, бутадиен-нитрильных и ряда других каучуков. Трещины возникают у них после непродолжительного растяжения, изгиба или кручения. Повышение концентрации озона в воздухе до 10~2 - Ю-4 % влечет растрескивание поверхности этих материалов при 20—25 0С уже через 1 ч выдержки. Поверхностные трещины способствуют в дальнейшем разрушению и понижают износостойкость резин.

Резины в силу податливости при механическом воздействии устойчивы против многих видов абразивного изнашивания. В то же время они изнашиваются «скатыванием». При трении микронеровности резины

деформируются, сворачиваются в скатку и отрываются от поверхности. Скорость изнашивания резин резко увеличивается при нагреве выше 150 ° С. Изнашивание развивается под действием касательных напряжений, надрывающих поверхностный слой и тем интенсивнее, чем больше коэффициент трения. Микротрещины, возникшие из-за старения, увеличивают износ.

Как полимерный материал резина характеризуется газо- и водонепроницаемостью, химической стойкостью (за исключением сильных окислителей). Резины незначительно поглощают воду (натуральная резина

до 2 % НгО). Исключительно важное значение имеет стойкость резин к маслу и моторному топливу. Резины общего назначения, включая натуральную резину, нестойки к этим веществам, набухают в них и быстро теряют прочность. Специальные резины — бутадиен-нитрильные, полиуретановые, полисульфидные, хлоропреновые, а также резины на основе фторкаучуков являются маслостойкими. Резина на основе бутилового каучука превосходит прочие по газонепроницаемости, ее основное применение

камеры автомобильных шин.

В рабочем интервале температур механические свойства резин изменяются: эластичность резин уменьшается при приближении к tCT и при температурах выше 100 ° С из-за термического разрушения и старения. При кратковременном нагреве до 120 ° С (чтобы исключить старение) прочность всех без исключения резин уменьшается вдвое. Теплостойкими являются резины на основе этиленпропиленовых, кремнийорганических и фторкаучуков (до 300-400 ° С вместо 150 ° С для обычных резин). Резина является диэлектриком.

Свойства резины изменяются в зависимости от выбора компонентов, соотношения между ними и условии вулканизации. В состав резины входят: каучук, 8 - 30 % пластификатора для подготовки сырой резины к формованию, наполнитель в виде тонкодисперсного порошка, вулканизатор для соединения молекул каучука поперечными связями, антиоксидант для замедления старения, ускоритель вулканизации, краситель и другие составляющие.

Наполнители подразделяют на активные (сажа, оксид кремния) и инертные (мел, тальк и др.). Активные наполнители в виде специально подготовленного высокодисперсного порошка взаимодействуют с молекулами каучука и повышают прочность резины. Инертные наполнители удешевляют резину, не повышая ее прочности. В сырую резину вводят регенерат (8 -30%) — мелкоизмельченные отходы и старые резиновые изделия, что тоже ее удешевляет. Чем больше содержание активного наполнителя и вулканизатора, тем выше прочность, модуль упругости и потери на гистерезис. Чем больше содержание пластификатора, тем слабее межмолекулярное взаимодействие, ниже прочность и меньше потери на гистерезис.

Технология изготовления резиновых изделий включает пластикацию каучука вместе с пластификаторами, смешивание компонентов и получение