Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нов Мех-ка_2008+Матем-й маятник.doc
Скачиваний:
36
Добавлен:
29.03.2015
Размер:
2.93 Mб
Скачать

3. Теорема штейнера

Любое из тел может быть расположено на различных расстояниях от оси вращения стола (фиксация расстояний с шагом 20 мм). Для проверки теоремы Штейнера измерить моменты инерции стола с двумя цилиндрами массой m=1011г на различных расстояниях от оси вращения стола. Результаты записать в предложенную таблицу.

Таблица 6.1

Расстояние цилиндров от оси r, см

4

6

8

10

Период колебаний стола Т, мс

Момент инерции I = I0T2/T02 , г м2

Контроль: I/r2, г

; ;j = 1,2,3.

r1 = 4 см; r2 = 6 см; r3 = 8 см; r4 = 10 см.

4. Измерение момента инерции с помощью пружин известной жесткости (эксперименты на шкиве стойки стола)

Для получения колебательной системы через шкив радиуса R стойки перекидывается длинная нить, концы которой посредством двух пружин прикрепляются к зацепам на основании стойки.

kпар = Н/м.

Момент инерции не нагруженного шкива

Период колебаний шкива Тшк = мс при R = мм;

Момент инерции шкива Iшк = kпарR2/(42) = г м2.

Момент инерции стержня

L = мм, m = г

Период колебаний шкива со стержнем

Т = мс.

Момент инерции шкива со стержнем

I = kпарR2Т2/(42) = г м2.

Момент инерции стержня:

Расчётное значение:

Iст = mL2/12 = г м2.

По результатам измерений

Icт = IIшк = г м2.

Сделать сравнительный анализ с методом п. 2.

Лабораторная работа № 7 определение отношения Ср/Сv для воздуха по клеману-дезорму

Цель работы: познакомиться с одним из методов определения Ср/Сv.

Приборы и принадлежности: установка ЛКТ-5, шланг с грушей-помпой, переходной шланг, мембранный манометр, емкость с водой.

Краткие теоретические сведения

Состояние газа характеризуется тремя величинами – параметрами состояния: давлением Р, объёмом V, и температурой Т. Уравнение связывающее эти величины, называется уравнением состояния газа. Для идеального газа уравнением состояния является уравнение Менделеева – Клапейрона:

, (7.1)

где m – масса газа,  - масса одного моля, R – универсальная газовая постоянная. Для одного моля:

. (7.2)

Теплоёмкостью тела называется количество теплоты, которое нужно сообщить телу, чтобы изменить его температуру на один градус:

(Дж/К).

Здесь dТ – изменение температуры тела при сообщении ему количества теплоты dQ.

Теплоёмкость единицы массы тела называется удельной теплоёмкостью:

(Дж/кг К).

Теплоёмкость одного моля вещества называется молярной теплоёмкостью:

(Дж/моль К). (7.3)

Величина теплоёмкости газа зависит от условий его нагревания, т.е. от того, нагревается ли газ при постоянном объёме (обозначим молярную теплоёмкость в этом случае через Сv) или процесс нагревания происходит при постоянном давлении (Ср). Сv и Ср связаны между собой. Эту связь можно получить, пользуясь уравнением состояния (7.2), написанным для одного моля газа, и первым началом термодинамики, которое можно сформулировать следующим образом: количество теплоты dQ, переданное системе, затрачивается на увеличение её внутренней энергии dU и на работу dA, совершаемую системой над внешними телами:

dQ = dU + dA. (7.4)

Элементарная работа

dA = P dV. (7.5)

Исходя из определения молярной теплоёмкости (7.3):

.

При изохорическом процессе V = const, следовательно, dV = 0 и dA = 0 (см. формулу (7.5)), и поэтому

Сv = . (7.6)

При изобарическом процессе Р = const, следовательно,

. (7.7)

Из уравнения состояния газа (7.2) получаем

Р dV + V dP = R dT.

Но dP = 0 (т.к. Р = const), а поэтому P dV = R dT.

Учитывая это равенство и заменяя dU через Сv dT, из выражения (7.7) получим

Ср = Сv + R.

Таким образом Ср > Cv: при нагревании при постоянном давлении тепло, сообщённое газу, идёт не только на изменение его внутренней энергии, но и на совершение газом работы.

Важную роль в термодинамике играет величина  = Ср/Сv , в частности,  входит в уравнение Пуассона, описывающее адиабатический процесс, т.е. процесс, протекающий без теплообмена с окружающей средой (dQ = 0). Уравнение Пуассона в переменных (Р,V) имеет вид:

РV = const.

Из первого начала термодинамики (7.4) для адиабатического процесса следует:

dU + dA = 0,

откуда

dA =  dU =  Cv dT,

т.е. работа в этом случае совершается за счёт изменения запаса внутренней энергии газа.