Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Домашнее задание (Н.Г.).DOC
Скачиваний:
117
Добавлен:
01.04.2015
Размер:
11.61 Mб
Скачать

3. Рекомендации к выполнению контрольной работы №1

Изучив теоретический материал, можно приступить к выполнению домашних контрольных работ. Содержание контрольной работы №1: даны точки В, С, D, E, F, своими координатами вычисленные по отношению точки А(А12) (табл. 1). Координаты точки А - произвольные. Проекции точки А (А1А2) нужно брать так, чтобы длина линии связи была не меньше чем

А1А2 =[-Ymax]+[-Zmax]+10. Требуется построить прямую линию пересечения между плоскостями ABC и DEF и определить их видимость по отношению плоскостей проекций П1 и П2.

Задача решается на формате А4 (образец выполнения этой работы на рис. 4). Проекции точек B, C, D, E, F, строят по координатам (табл. 1), заданным относительно точки А.

После решения задачи видимые части треугольников можно раскрасить цветными карандашами.

Для решения задачи необходимо сначала проанализировать заданный чертеж. Плоскости, заданные треугольниками ABC и DEF, - общего положения. Следовательно, эта задача третьей группы сложности. Из теории должно быть известно, что такие задачи решаются при помощи посредников. Каждый посредник помогает выявить одну общую точку. Необходимо построить линию пересечения, т.е. не менее двух точек,

Рисунок 4

следовательно, и посредников должно быть два. Рассмотрим решение на примере (рис. 4)

1.Пересечем заданные плоскости ABC и DEF вспомогательной плоскостью - посредником λ(λ2) (горизонтальной плоскостью уровня) и далее строим линии пересечения плоскости λ с каждой из данных плоскостей: λ  ABC=1,2; λ  DEF=D,3. Так как λ  П2, то 12222 и D2322 Горизонтальные проекции точек 1,2 и 3 строим на основании принадлежности: 1 с АВ, 2 с ВС и 3 с EF.

2.Находим точку пересечения построенных прямых на горизонтальной плоскости проекций 1121  D131=M1. Т.к. точка М принадлежит плоскости λ, то вторую проекцию точки M (М2) строим на основании принадлежности λ(λ2). Точка M принадлежит трем плоскостям ABC, DEF и λ, следовательно, она является первой точкой, принадлежащей линии пересечения.

3.Для того чтобы найти еще одну точку аналогично, проведем вторую вспомогательную плоскость (2) (горизонтальную плоскость уровня) :   ABC=C,4;   DEF=5,6.

Так как  ||λ, то нет необходимости находить горизонтальные проекции всех точек. Достаточно найти горизонтальную проекцию точки 5 и провести 5161 || D131 и С141||1121 Там где C141 и 5161 пересекутся, находится вторая точка N (N1,N2), N2 находится аналогично M2.

4.Соединив M1N1 и N2M2, получим проекцию линии пересечения.

5.Видимость определяем при помощи конкурирующих точек. На П2 конкурирующие точки 72=82 выбираем в месте видимого пересечения E2F2 и A2B2. Из точек 72 =82 опускаем линию связи на П1. Точки 7EF, точка 8AB на П1 видим, что точка 7 находится ближе, чем точка 8. Делаем вывод, что в месте видимого пересечения видимой является E2F2 . Аналогично на П1 конкурирующие точки 91=101, 9BC, 10FE. По линии связи определяем, что точка 9 находится выше, чем 10, следовательно, видимой является B1C1. Без определения видимости задача считается нерешенной.

4. Рекомендации к выполнению контрольной работы №2

Содержание контрольной работы №2: дано непрозрачное комплексное тело (табл. 2). Фронтально-проецирующую секущую плоскость Р(Р2), проводим самостоятельно через середину высоты комплексного тела под углом 60  к горизонтальной плоскости проекций.

Требуется построить проекции и определить натуральную величину сечения поверхности комплексного тела секущей плоскостью способом замены плоскостей проекций и способом плоскопараллельного перемещения.

Плоскость, секущая геометрическое тело, считается непрозрачной и безграничной. Исходя из этого, нужно определить видимость элементов

Рисунок 5

геометрического тела на П1. Секущая плоскость получится видимой на П2 в виде прямой линии.

Исходный чертеж исполняется в масштабе 1:1 на листе чертежной бумаги формата А3 Выполненную работу в тонких линиях предъявить на проверку преподавателю, после чего можно проекции сечения и натуральную величину сечения обвести цветными карандашами.

Решение задачи рассмотрим на примере (рис. 5). Фронтальная проекция сечения вырождается в прямую линию, совпадающую с проекцией фронтально-проецирующей плоскостью Р(Р2). Следовательно, строить нужно горизонтальную проекцию сечения. Для этого разбиваем фронтальную проекцию на вспомогательные точки, по которым и будем строить горизонтальную проекцию сечения. Определим сначала высшие точки (1,2) и низшие (9,10). Высшие точки лежат на очерке призмы, низшие - на плоскости основания шаровой поверхности. Таким образом, найти горизонтальные проекции нетрудно, достаточно опустить линии связи до пересечения; для точек 1 и 2 - с очерком призмы; для точек 9 и 10- с нижним основанием шаровой поверхности. Далее определяем точки 3 и 4 - эти точки расположены на ребрах призмы. Следующие точки 5,6,7,8 - они расположены в месте перехода шаровой поверхности в поверхность призмы. Точки 5 и 8 лежат на верхнем основании усеченной шаровой поверхности, а точки 6 и 7 - на основании призмы. Случайные точки 11 и 12 находим при помощи параллели m (m2). Для этого на П1 радиусом параллели R (радиус определяется от оси до очерка) строим горизонтальную проекцию параллели m (m1) и находим при помощи линий связи находим на ней горизонтальные проекции точек 11 и 12.

Полученные точки на П1 соединяем с учетом видимости, считая Р бесконечной и непрозрачной. Тогда при взгляде на П1 правая часть комплексного тела будет находиться под плоскостью Р и, следовательно, будет невидима на П1.

Следующим этапом решения задачи является определение натуральной величины сечения. Сначала рассмотрим способ замены плоскостей проекций. Плоскость проекций П1 заменяем на П5, причем располагаем П5 параллельно сечению. Для этого на чертеже необходимо провести ось Х12 (можно провести ее по низу фигуры) и новую ось Х25, которая должна быть параллельна Р2. Расстояние между Р2 и Х25 берется произвольно, исходя из соображений компактности чертежа. Поскольку расстояния до незаменяемой плоскости проекций П2 сохраняются на П5, их замеряют на П1 (от точки до оси Х12)и откладываются на соответствующей линии связи на П5 (от оси Х25). Полученные точки соединяются линией.

Теперь рассмотрим способ плоскопараллельного перемещения. В этом случае фронтальную проекцию сечения расположим параллельно оси Х12 (сохраняя при этом расстояние между точками неизменным). Для получения натуральной величины теперь достаточно провести линии связи от каждой точки с П2 и с П1. В месте пересечения одноименных линий

связи получатся точки натуральной величины сечения. Полученные точки соединяются линией.

Следует обратить внимание на следующее:

  1. Поскольку натуральную величину необходимо получить двумя способами, компоновку чертежа нужно стараться делать так же, как на образце (рис. 5)

  2. В обоих случаях фигура натуральной величины сечения должна получиться одинаковой.