Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

техн трансп обсл и рем уч метод компл

.pdf
Скачиваний:
28
Добавлен:
02.04.2015
Размер:
2.92 Mб
Скачать

состоянии объекта, но не характеризующие его функциональные возможности; параметры, дающие информацию о функциональных возможностях объекта, но не дающие информацию о его техническом состоянии; параметры (комбинированные), дающие информацию как о техническом состоянии объекта, так и о его функциональных возможностях.

Выбор диагностических параметров для оценки технического состояния автомобилей осуществляют из номенклатур, рекомендуемых государственными стандартами (ГОСТ 25478-91, ГОСТ 26048-83, ГОСТ 17.2.2.03-87 и др.), а также другой нормативно-технической документацией.

При выборе диагностических параметров можно применять метод, сущность которого заключается в следующем. Выбирают основные структурные параметры Si и параметры Di, которые можно использовать в качестве диагностических. По данным статистики отказов определяют “вероятностные веса” структурных параметров при различных состояниях диагностируемого объекта, а также устанавливают вероятность возникновения этих состояний при различных комбинациях диагностических параметров.

В настоящее время автомобили оснащаются бортовыми и встроенными системами диагностирования, при этом не теряют актуальность и традиционные системы внешнего диагностирования. В связи с этим при выборе диагностических параметров необходимо определить, какие из них целесообразно контролировать бортовыми системами, а какие – с помощью внешних средств.

Диагностические нормативы служат для количественной оценки технического состояния автомобиля. Они устанавливаются ГОСТами и руководящими техническими материалами. К диагностическим нормативам относятся: начальное Пн, предельное Пп и допустимое значение Пд.

Начальный норматив Пн соответствует величине диагностического параметра новых, технически исправных объектов. В эксплуатации Пн используют как величину, до которой необходимо довести измеренное значение параметра путем восстановительных и регулировочных операций. Начальный диагностический норматив задается технической документацией.

Для некоторых механизмов автомобиля, приборов систем зажигания, питания, Пн подбирают индивидуально по максимуму экономичности в процессе диагностирования. Это позволяет наиболее полно использовать индивидуальные возможности автомобиля, различные из-за неоднородности производства. Практически это означает, что используя в качестве норматива индивидуальное значение Пн, можно значительно повысить мощность и топливную экономичность автомобиля.

Предельный норматив Пп соответствует такому состоянию объекта, при котором его дальнейшая эксплуатация становится невозможной или нецелесообразной по технико-экономическим соображениям.

Предельный норматив диагностического параметра задают требованиями ГОСТов, технической документацией или же определяют,

221

пользуясь установленными методиками. В эксплуатации предельный норматив Пп используют для прогнозирования ресурса конкретных объектов м в случае встроенного, непрерывного диагностирования.

Допустимый норматив Пд является основным диагностическим нормативом при периодическом диагностировании, проводимом в рамках планово-предупредительной системы ТО автомобилей. Он представляет собой ужесточенную величину предельного норматива, при которой обеспечивается заданный, или экономически оптимальный уровень вероятности отказа на предстоящем меж контрольном пробеге. На основе допустимого норматива ставят диагноз состояния объекта и принимают решение о необходимости профилактических ремонтов или регулировок. В эксплуатации допустимый норматив принимается условно как граница неисправных состояний объекта для заданной периодичности его меж контрольного пробега. Пд состоит из начального Пн и допускаемого отклонения Д. Если текущее значение диагностического параметра выходит из допустимого норматива, это означает, что хотя объект и является работоспособным, его не следует выпускать в очередной пробег без регулировки или ремонта из-за высокой вероятности отказа или пониженных технико-эксплуатационных свойств.

При организации технологического процесса диагностирования ставится задача рациональной минимизации числа контрольно-измерительных операций, повышения точности измерения диагностических параметров и соответственно достоверности постановки диагноза. При этом должно соблюдаться общее условие минимизации издержек на эксплуатацию, обслуживание и ремонт диагностируемого объекта с сохранением на должном уровне коэффициента готовности автомобильного парка.

Алгоритм диагностирования строится таким образом, чтобы по выбранному перечню параметров и последовательности их измерения определить работоспособность объекта и локализовать выявленные при этом неисправности. Глубина локализации неисправности определяется в каждом конкретном случае своим уровнем: заменой детали, заменой или ремонтом узла или агрегата, проведением каких-то регулировочных работ. Этот уровень определяется эксплуатационными и экономическими факторами, нормируемыми показателями надежности, требованиями обеспечения безопасности дорожного движения, сохранения экологических характеристик и т.д.

Заключительными этапами построения алгоритма диагностирования является разработка базовой и комплексной маршрутных технологий. В основу построения алгоритма закладываются задачи статистического моделирования и в первую очередь условие альтернатив.

Цель постановки диагноза – выявить неисправности объекта, определить потребность в ремонте или ТО, оценить качество выполненных работ или же подтвердить пригодность диагностируемого механизма к эксплуатации до

222

очередного обслуживания. При постановке диагноза, как правило, используют субъективные аналитические возможности человека – оператора.

Постановка диагноза сводится к измерению текущего значения параметра П (или параметров) и сравнению его с нормативом. При периодическом диагностировании таким нормативом является допустимое значение диагностического параметра Пд, а при непрерывном (встроенном) диагностировании – предельное, Пп. Возможны три варианта постановки диагноза: П>Пп; Пд<П<Пп; П<Пд.

Впервом и втором вариантах объект неисправен (необходим ремонт или предупредительное техническое обслуживание), и для выявления причин неисправности требуется найти неисправность. В третьем варианте объект исправен.

Постановка диагноза при поиске неисправности по нескольким диагностическим параметрам, существенно осложняется. Дело в том, что каждый диагностический параметр может быть связан с несколькими структурными и наоборот. Это значит, что при числе, n используемых

диагностических параметров число технических состояний диагностируемого механизма может составить 2n. Теоретически постановка диагноза сводится к тому, чтобы при помощи диагностических параметров, связанных с определенными неисправностями объекта выявить из множества возможных его состояний наиболее вероятное. Поэтому задачей диагноза при использовании нескольких диагностических параметров (П1, П2, …Пn) является раскрытие множественных связей между ними и структурными параметрами объекта S1, S2,…Sm. Для решения этой задачи указанные связи можно представить в виде структурно-следственных моделей и диагностических матриц.

Средства технического диагностирования представляют совокупность средств, с помощью которых оценивают состояние объекта. Они включают программные средства диагностирования, ремонтно-эксплуатационную документацию и технические средства диагностирования.

Программные средства диагностирования – пакеты программ, используемые для диагностирования. Ремонтно-эксплуатационная документация – таблицы состояний, методики поиска дефекта, ремонтные схемы. Технические средства диагностирования (ТСД) представляют собой приборы или устройства, предназначенные для решения различных задач, возникающих при определении состояния ОД. Технические средства диагностирования объектов отличаются большим разнообразием. Состав и принцип построения ТСД определяются решаемыми задачами диагностирования, степенью воздействия на оборудование, степенью встраивания, способами получения информации, способами обработки информации о состоянии оборудования, степенью автоматизации и степенью универсальности и подвижности.

Взависимости от решаемых задач диагностирования можно выделить следующие виды ТСД:

223

-контроль работоспособности;

-поиск дефектов;

-прогнозирование состояния;

-контроль и прогнозирование состояния;

-контроль работоспособности и поиск дефектов;

-контроль и прогнозирование состояния, поиск дефектов.

По степени воздействия на оборудование ТСД разделяют на активные и пассивные. Пассивные ТСД выполняют анализ информации о состоянии оборудования, для чего воспринимают, обрабатывают и оценивают диагностические признаки. Активные ТСД воздействуют на оборудование, подавая на отведенные для этой цели диагностирования входы тестовые сигналы, стимулирующие реакцию оборудования, которая затем оценивается.

Конструктивно ТСД могут полностью или частично относиться к ОД (встроенные) или выполняться отдельно от конструкции ОД (внешние). То и другое конструктивное выполнение ТСД в основном определяется особенностями эксплуатации ОД.

По способу получения информации о состоянии оборудования ТСД делятся на средства для определения состояния по совокупности параметров ТСД-П и средства для оценивания состояния по сигналам ТСД-С. В первом случае обрабатывается информация, снимаемая в контрольных точках, специально предусмотренных в оборудовании. Во втором случае для возможности оценивания реакции на рабочем выходе объекта в состав ТСД включают эквивалентную модель, а диагноз устанавливают путем сравнения

реакции оборудования и модели на одинаковые входные воздействия.

 

По

способу

обработки

информации

ТСД

могут

быть

последовательного, параллельного и параллельно-последовательного

действия. ТСД последовательного действия осуществляют последовательный прием, измерение, контроль и обработку информации. Они отличаются простотой, использованием минимального числа преобразовательных, измерительных средств м средств контроля. При этом способе диагноз формируется по отдельному признаку после каждой проверки. ТСД параллельного действия осуществляют одновременно измерения и контроль всех параметров, что сокращает время формирования общего диагностического признака, по которому оценивают состояние оборудования. ТСД параллельно-последовательного действия осуществляют одновременный прием и обработку информации по нескольким каналам. При этом анализ результатов выполняется после реализации группы проверок, т.е. измерения или контроля группы признаков. Подобные средства сложнее средств последовательного действия, но более эффективны.

По степени автоматизации ТСД разделяются на ручные,

автоматизированные м автоматические. Средства, требующие активного участия человека-оператора (ЧО) при их использовании относят к ручным. Это все используемые в процессе диагностирования измерительные приборы.

224

ТСД, при использовании которых роль ЧО сводится к выполнению отдельных достаточно простых операций (включение, переключение, выключение и др.), относятся к автоматизированным ТСД. Средства, которые функционируют без участия ЧО, относятся к автоматическим ТСД. Условной границей между этими ТСД может быть доля времени, затрачиваемого на выполнение операций автоматически, в общем времени диагностирования Тд. Если время на автоматическое выполнение операций составляет до 0,1 Тд, то ТСД называют ручным, а если время на автоматические операции составляет не менее 0,9 Тд, то ТСД называют автоматическим. Все остальные относятся к автоматизированным.

По степени универсальности ТСД разделяются на специализированные и универсальные. Специализированные ТСД предназначены для оценивания состояния однотипного оборудования. Такие ТСД могут включать унифицированные блоки, мини-ЭВМ и микропроцессоры. Универсальные ТСД предназначены для диагностирования оборудования различного назначения м конструктивного выполнения. Универсальные средства могут быть использованы для сдачи оборудования после изготовления и в период эксплуатации. Такие средства строятся с применением ЭВМ. В этом случае переход от одного типа оборудования к другому осуществляется путем смены программы диагностирования без изменения структуры ТСД. Универсальные ТСД, как правило, проектируются с «открытыми входами» под унифицированные сигналы первичных преобразователей. Универсальные ТСД достаточно сложные и дорогостоящие, и для их обслуживания требуются специалисты высокой квалификации.

В зависимости от степени подвижности ТСД могут быть выполнены

переносными, передвижными и стационарными. Стационарные средства чаще всего размещаются на диагностических станциях, испытательных и контрольных центрах. Передвижные средства монтируются на самоходных или несамоходных транспортных средствах.

Эффективность ТСД оценивают совокупностью показателей, основными из которых являются показатели надежности, метрологические и массогабаритные.

Показатели надежности ТСД характеризуют:

-вероятность безотказной работы, т.е. вероятность того, что в пределах заданной наработки отказ ТСД не возникает;

-коэффициент готовности Ку представляет собой вероятность того, что ТСД окажутся работоспособными в произвольный момент времени, кроме планируемых периодов, в течение которых использование их по назначению не предусматривается, и характеризует как безотказность, так и ремонтопригодность ТСД.

Метрологические показатели характеризуют точность ТСД, которая в большей степени влияет на инструментальную достоверность. Точность

225

можно определить так называемой мерой точности, которая зависит от погрешности диагностирования.

Мера точности зависит от сложности ТСД и определяются точностью отдельных операций при диагностировании. При постановке диагноза могут быть случайные и систематические погрешности, обусловленные погрешностями измерительного тракта ТСД и нестабильностью метода измерения. Систематические погрешности, характер изменения которых известен, могут быть учтены при выборе допуска на параметры. Случайные погрешности всегда будут вносить неопределенность при оценивании результата диагностирования. Погрешности метода измерения приводят также к ошибкам в оценивании состояния ОД. Иногда кроме статической погрешности следует учитывать и динамическую погрешность измерения, влияние которой весьма существенно при измерении переменной величины. Причем, чем быстрее изменяется параметр, тем больше погрешность измерения в данном интервале времени. Основной вклад в ошибки при постановке диагноза вносят датчики, первичные преобразователи, коммутаторы и элементы измерительного тракта.

Массогабаритные показатели ТСД можно охарактеризовать величиной компактности W=G/V,

где G – масса ТСД; V – занимаемый объем.

Требования минимально возможной стоимости, малой массы, габаритов являются общими для любых технических средств.

Прогнозирование – процесс определения срока или ресурса исправной работы автомобиля до возникновения предельного состояния, т.е. предсказания момента возникновения отказа. Необходимость прогнозирования определяется возможностью управлять техническим состоянием автомобиля в целом, если известны изменения его технического состояния во времени. С помощью прогнозирования можно наиболее полно использовать ресурсы рассматриваемой системы и оптимизировать ее обслуживание как восстанавливаемого объекта эксплуатации. Существующие методы обслуживания по среднестатистическим показателям не дают возможности оптимизировать этот процесс, так как не учитывают индивидуальных особенностей автомобиля. Это приводит к увеличению материальных и трудовых затрат на поддержание автомобиля в технически исправном состоянии и снижению эффективности его использования. Организовать оптимальный процесс обслуживания автомобиля возможно только на базе диагностической информации и прогнозирования ее изменения во времени или по пробегу. Практически прогнозирование состоит в назначении периодичности диагностирования и определении упреждающих диагностических нормативов, которые решаются на базе теории надежности автомобилей. В основе определения периодичности диагностирования и упреждающих диагностических нормативов лежат закономерности технического состояния и экономические показатели.

226

Прогнозирование изменения технического состояния может проводиться по разнообразным критериям (например, по усталостной прочности, динамике процесса изнашивания, виброакустическим показателям, содержанию элементов изнашивания в масле, показателям стоимости и трудовых затрат и др.).

Методы прогнозирования подразделяются на три основные группы:

1. Методы экспертных оценок, сущность которых сводится к обобщению, статистической обработке и анализу мнений специалистов.

2.Методы моделирования, базирующиеся на основных положениях теории подобия и состоящие из формирования модели объекта исследования, проведения экспериментальных исследований и пересчета полученных значений с модели на натуральный объект.

3.Статистические методы, из которых наибольшее применение находит метод экстраполяции. В его основе лежат закономерности изменения прогнозируемых параметров по времени. Для описания этих закономерностей подбирают по возможности простую аналитическую функцию с минимальным количеством переменных.

Наибольшее распространение получил метод статистического моделирования, когда в качестве базовых материалов используются результаты технической диагностики. В этом случае прогноз следует рассматривать как вероятностную категорию.

Процедурная модель прогнозирования содержит три наиболее общих этапа: ретроспектирование, диагностирование, прогнозирование. Содержание этапов состоит в анализе прошлого, определении настоящего и оценке будущего.

Наиболее важным является прогнозирование остаточного ресурса. К наиболее простым способам, дающим приближенное значение остаточного ресурса, относится линейное прогнозирование. В этом случае изменение параметра в зависимости от наработки принимается линейным. На основе начального (номинального) значения параметра и значения параметра, определяемого диагностированием в момент прогнозирования, расчет остаточного ресурса выполняют по формуле:

lост = l·{(Ппр – Пнач)/(Пl – Пнач) – l}, где lост – остаточный ресурс в километрах пробега;

l – наработка с начала эксплуатации или с момента проведения капитального ремонта; Пнач, Ппр – начальное и предельное значения параметра;

Пl – значение параметра к моменту определения состояния в целях прогнозирования.

Для сопряжения основных деталей двигателя линейный способ прогнозирования дает несколько завышенную оценку остаточного ресурса.

При отсутствии показателей наработки l с начала эксплуатации линейное прогнозирование можно осуществить по двум измерениям параметра, выполненным в различное время с промежуточной наработкой l.

227

Более точно, чем линейные зависимости, действительные закономерности изменения параметров могут быть описаны уравнениями

типа

Пl = Пнач + а1 ·l + a2·l2 +…+ an·ln,

где Пl – параметр технического состояния; Пнач – начальное значение параметра;

а1, a2,…an - опытные коэффициенты; l – текущая наработка.

Большое число опытных коэффициентов и сложность их определения затрудняют использование указанной зависимости. Поэтому при прогнозировании остаточного ресурса применяют уравнение более простого вида:

Пl = Пнач + b·lα,

где b – опытный коэффициент;

ά – показатель степени, характеризующий скорость изменения параметра. Тогда при известных значениях начального (номинального) и

предельного параметров состояния и при измерении диагностического параметра технического состояния в момент прогнозирования остаточный ресурс рассчитывают по формуле:

lост = l {[Ппр – Пнач)/(Пl – Пнач)]

1

- 1},

 

 

 

где lост – остаточный ресурс в километрах пробега;

l – наработка двигателя с начала эксплуатации или с момента проведения ремонта; Пнач, Ппр – начальное и предельное значение параметра;

Пl – значение параметра к моменту определения состояния в целях прогнозирования.

Значения показателя степени определяют опытным путем. Рассмотренный способ допускает проведение прогнозирования по

измерению одного параметра, а именно – параметра состояния в момент диагноза. Среднее статистическое значение начального параметра принимается по техническим условиям. Колебания фактического значения начального параметра в широких пределах вносят существенную погрешность в определение остаточного ресурса.

Прогнозирование состояния сложных объектов должно выполняться на основе ряда измерений, проведенных по мере увеличения наработки. Оперативность перспективных диагностических методов и средств позволяет реализовать возможности прогнозирования по нескольким диагнозам. Остаточный ресурс по ряду измерений диагностического параметра определяется по формуле:

1

lост = l {[Ппр – Пнач)/(Пl – Пнач)] - l}, где l – наработка к моменту диагноза с начала эксплуатации; Пl – значение параметра при наработке l;

Пнач – начальное значение параметра.

228

Приведенная формула совпадает с предыдущей формулой, когда остаточный ресурс приближенно определяется на основе одного диагноза при наработке l и когда вероятностное значение ά установлено заранее на основе статистических данных. В последнем случае при расчетах остаточного ресурса значение степени ά определяется по сглаженному графику, полученному на основе ряда диагнозов, проводимых в разное время в ходе увеличения наработки l.

Вопросы для самопроверки по разделу 4

1.Приведите сравнительный анализ методов определения периодичности технического обслуживания.

2.Какими показателями оценивается безотказность автомобилей?

3.Какой зависимостью описывается изменение технического состояния автомобилей по их наработке?

4.Какими показателями оцениваются закономерности процессов восстановления?

5.Какие задачи стоят перед техническим диагностированием автомобилей?

6.Какие существуют связи между структурными и диагностическими параметрами?

7.По какому показателю осуществляется планирование постановки автомобилей на обслуживание?

8.С помощью каких коэффициентов осуществляется корректирование трудоѐмкостей ЕО, ТО-1, ТО-2?

9.Какими показателями оценивается эффективность технической эксплуатации автомобилей?

10.Какие существуют виды ремонта автомобилей?

Заключение

Знания, умения и навыки, полученные при изучении дисциплины «Техника транспорта, обслуживание и ремонт» понадобятся в дальнейшем при изучении дисциплин «Безопасность перевозочного процесса», «Общий курс транспорта», «Безопасность перевозочного процесса».

3.3. Глоссарий

Абсорбция – процесс поглощения вещества из газовой смеси жидкостями.

Адгезия – сцепление поверхностей разнородных тел.

Адсорбция – процесс поглощения веществ из растворов или газов поверхностным слоем твѐрдого тела или жидкости.

229

Антифрикционные свойства – комплекс свойств, которые проявляются при трении в подшипниках скольжения.

Боковой увод – отклонение вектора скорости эластичного колеса от плоскости его вращения при действии любой по величине боковой силе. Вулканизация – превращение каучука в резину.

Генератор автомобильный – основной источник электрической энергии в автомобиле, предназначенный для питания всех потребителей и подзарядки аккумуляторной батареи при работающем двигателе.

Глушитель двигателя – устройство для глушения шума и выпуска отработавших газов автомобиля.

Дефект – каждое отдельное несоответствие изделия требованиям, установленным нормативно-технической документацией.

Дефектация – часть технологического процесса ремонта, включающая выявление дефектов элементов изделий и их оценку в соответствии с нормативно-технической документацией.

Динамический фактор – значение свободной тяговой силы, необходимой для перемещения 1кг массы.

Дорожный просвет – расстояние между низшей точкой автомобиля и плоскостью дороги.

Зазор – расстояние между поверхностями сопряжѐнных деталей машин. Изделие – единица промышленной продукции, количество которой может исчисляться в штуках.

Изнашивание – процесс разрушения и отделения материи от поверхности твѐрдого тела, проявляющийся в постепенном изменении размеров и формы тела.

Карданная передача – передача. Осуществляющая силовую связь механизмов автомобиля, валы которых несоосны или находятся под углом.

Каркас – силовая основа изделия, определяющая его форму, прочность и жѐсткость.

Картер – неподвижная деталь машин. Служащая опорой для движущихся деталей.

Катушка зажигания – повышающий трансформатор напряжения с разомкнутой магнитной цепью.

Консервация – метод защиты изделия от разрушения в процессе транспортирования и хранения.

Коробка передач – зубчатый редуктор, позволяющий получать несколько передаточных чисел, используя различные варианты зацепления.

Маневренность – группа свойств, характеризующих возможность автомобиля изменять заданным образом своѐ положение на ограниченной площади в условиях, требующих движения по траекториям, большой кривизны с резким уменьшением направлений.

230