Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБЩАЯ БИОЛОГИЧЕСКАЯ ХИМИЯ / КОНСПЕКТ ЛЕКЦИЙ / Обмен белков и аминокислот_2007.doc
Скачиваний:
70
Добавлен:
09.04.2015
Размер:
800.77 Кб
Скачать
    1. Прямое аминирование фумаровой кислоты

Одна из дикарбоновых аминокислот – аспарагиновая – может синтезироваться путем прямого присоединения аммиака к фумаровой кислоте.

Фермент аспартат-аммиак-лиаза, катализирующий эту реакцию, выделен из бактерий, представляет собой металлопротеин, активируемый Са2+. У высших растений активность фермента невысока, он обнаружен в клевере, горохе и других растениях.

    1. Синтез незаменимых аминокислот

Высшие растения способны синтезировать все необходимые для белкового синтеза аминокислоты и могут использовать для этого соответствующие -кетокислоты, а также аммиак или нитраты в качестве источника азота. Организм животных и человека не синтезирует все необходимые аминокислоты. Не синтезируются только 10 из 20 необходимых, или незаменимых аминокислот: валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, аргинин, гистидин.

Незаменимость этих аминокислот для роста и развития организма животных и человека объясняется отсутствием соответствующих -кетокислот, из которых в процессе аминирования они могли бы синтезироватся.

Биосинтез каждой незаменимой аминокислоты имеет специфические особенности; он гораздо сложнее, чем биосинтез заменимых аминокислот.

Поскольку синтез каждой из незаменимых аминокислот имеет свою особенность, ограничимся лишь некоторыми общими положениями. Так, три незаменимых аминокислоты лизин, треонин и метионин в растениях и микроорганизмах синтезируются из аспарагиновой кислоты.

Изолейцин образуется у бактерий из незаменимой аминокислоты треонина. Многостадийный синтез у растений фенилаланина осуществляется из эритрозо-4-фосфата и фосфопирувата; на предпоследних стадиях осуществляется перенос аминогруппы от глутаминовой кислоты. Биосинтез гистидина – незаменимой аминокислоты для детей – полностью изучен у бактерий и грибов. Завершающей стадией является реакция трансаминирования, роль донора аминогруппы выполняет также глутаминовая кислота. Путь биосинтеза гистидина в высших растениях не изучен. Синтезированные аминокислоты – заменимые и незаменимые используются для биосинтеза белка.

  1. Биосинтез белка

Выявление механизма биосинтеза белка – одна из самых важных и интересных проблем современной биохимии. Приблизительные подсчеты показывают, что одна живая клетка содержит несколько тысяч разных белков, организм же в целом должен синтезировать десятки тысяч индивидуальных белковых молекул.

Каким же образом в клетке образуется такое большое количество разнообразных белков из небольшого набора аминокислот, причем именно в то время и в таком количестве, в каком требуется? И как специфические свойства белков передаются из поколения в поколение? Такие вопросы волнуют ученых во всем мире. Механизм сложных жизненных процессов, лежащих в основе передачи наследственности, начали расшифровывать лишь в последние 60 лет.

Процесс биосинтеза белков оказался универсальным для всех живых существ на Земле – от простейшей бактериальной клетки до высших растений, животных и человека. Синтез белка в клетке основывается на двух фундаментальных принципах, характерных для живых систем, отличающих биологические системы от неживой природы, – матричный принцип и принцип комплементарности.

Матричный принцип состоит в том, что взаимодействие происходит не между молекулами, находящимися в системе в хаотическом движении, а между пространственно организованными фиксированными молекулами и системами.

Одно из этих веществ обязательно представляет собой полимер, тогда как другое может быть как полимером, так и мономером. Матричный синтез является основным во всех тех случаях, когда необходимо обеспечить заранее заданную последовательность мономеров во вновь синтезированном биополимере.

Принцип матричного синтеза реализуется через принцип комплементарности. Именно комплементарность позволяет матрице «выбрать необходимый мономер и установить его в нужном месте на матрице».

В результате кропотливой работы многих ученых была установлена в основном роль нуклеиновых кислот в биосинтезе белков и показана матричная роль РНК в этом процессе, что позволило Ф. Крику выработать положение о передаче генетической информации в клетке.

Последовательность матричных биосинтезов белка включает три основных этапа.

1) Репликацию ДНК – биосинтез копии ДНК с использованием в качестве матрицы уже существующие молекулы ДНК.

2) Транскрипцию – биосинтез РНК (любой тРНК, мРНК, рРНК) на матрице ДНК. Нуклеотидная последовательность в молекуле РНК комплементарна какому-то участку (гену) молекулы ДНК.

3) Трансляция – биосинтез полипептидных цепей белковых молекул, аминокислотная последовательность которых задается нуклеотидной последовательностью мРНК при участии тРНК и рРНК. В качестве матрицы используется мРНК.