Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОБЩАЯ БИОЛОГИЧЕСКАЯ ХИМИЯ / КОНСПЕКТ ЛЕКЦИЙ / Обмен белков и аминокислот_2007.doc
Скачиваний:
70
Добавлен:
09.04.2015
Размер:
800.77 Кб
Скачать
    1. Понятие о мутациях

Выше указывалось, что состав ДНК в процессе репликации не меняется. Копирование ДНК создает молекулярную основу одного из фундаментальных свойств жизни – наследственность. Противоположное свойство – изменчивость – столь же существенно, поскольку наряду с наследственностью обеспечивает возможность естественного отбора и биологической эволюции.

Молекулярную основу изменчивости организмов составляют наследственные изменения первичной структуры ДНК – мутации, которые могут происходить из-за целого ряда причин. Например, имеющиеся азотистые основания могут быть заменены другими их аналогами или вовсе выпасть из молекулы. Совершенно очевидно, что если в результате таких ошибок образуется ДНК, не характерная для данного вида, то она после самоудвоения дает начало новым нехарактерным молекулам, что ведет к синтезу измененного «неправильного белка» или к прекращению синтеза белка, т.е. к мутациям.

Но случайные ошибки и соответственно спонтанные мутации встречаются исключительно редко. Количество мутаций можно увеличить искусственно, если подвергнуть организмы (или их клетки) действию ионизирующей радиации, действию УФ-лучей или же обработать определенными химическими веществами, которые называют мутагенами.

Мутагены – это чужеродные химические соединения увеличивающие число мутаций. Некоторые мутагены химически изменяют структуру пуринов или пиримидинов, приводя к изменению характера спаривания оснований. Сравнительно простой пример дает мутагенное превращение цитозина в урацил (окислительное дезаминирование), которое можно вызвать, действуя на клетку азотной кислотой (рис 4):

  1. превращение цитозина в урацил;

2) расхождение цепей материнской ДНК и синтез на них комплементарных цепей. Одна из дочерних клеток получает ДНК с парой А–У в отличие от другой дочерней клетки, которая, как и материнская, содержит в этом месте ДНК пару Г–Ц.

Рисунок 4 – Мутация, вызванная дезаминированием цитозина

Замена нуклеотида может привести к изменению смысла кодона и, следовательно, к синтезу измененного белка. Так возникла, например, мутация, проявляющая как серповидноклеточная анемия: кодон, ответственный за включение глутаминовой кислоты в положение 6 β–цепи гемоглобина, превратился в кодон валина.

Мутации могут быть нейтральными, полезными или вредными. К нейтральным относятся такие мутации, когда замена аминокислотного остатка в белке не сказывается на его функции. Это происходит при замене одной аминокислоты на другую, сходную по свойствам, – по заряду, по гидрофобности, размерам боковой группы.

Если в результате мутации свойства белка изменяются таким образом, что особь получает преимущество для выживания, то мутация биологически полезна. Чаще всего мутации бывают вредными. Эксперимент исследования и практический опыт показали, что случайное вмешательство в сложно организованную отлаженную эволюцией систему редко оказывалось полезной для нее, а чаще всего велика вероятность вредных последствий.

  1. Переваривание белков

Белки, поступившие в организм с пищей, в желудочно-кишечном тракте расщепляются до аминокислот при действии группы протеолитических ферментов – пептидгидролаз (по современной номенклатуре); широко известно их тривиальное название – протеазы, или протеиназы. Эти ферменты катализируют гидролитическое расщепление пептидной связи в белках.

Протеолитические ферменты животных и человека изучены достаточно хорошо, в меньшей степени исследованы растительные протеазы.

Для протеолитических ферментов характерен ряд общих свойств и особенностей.

Ферменты, расщепляющие белки, обладают относительной субстратной специфичностью, которая определяется:

– длиной полипептидной цепи;

– структурой радикалов аминокислотных остатков, образующих гидролизуемую пептидную связь;

– положением связи в полипептиде.

Внутренние пептидные связи расщепляются эндопептидазами, концевые – экзопептидазы:

Все протеолитические ферменты синтезируются в виде неактивных предшественников, называемых зимогенами или проферментами, и таким образом клетки защищены от контакта с активной формой фермента и автолиза. Превращение зимогена в активный фермент происходит путем необратимой ковалентной модификации зимогена за счет локального протеолиза, т.е. разрыва одной или нескольких пептидных связей и отщепления ограниченного числа аминокислотных остатков. Это вызывает конформационные изменения в полипептиде, достаточные для формирования пространственной структуры активного центра фермента.

Расщепление пищевых белков начинается с действия протеолитического фермента – пепсина. В клетках слизистой оболочки желудка пепсин содержится в неактивной форме, называемой зимогеном – пепсиногеном. Специализированные клетки эпителия желудка секретируют соляную кислоту, создавая в желудке кислую среду (рН1,5-2,0). Этот фактор имеет важное значение в переваривании белков: денатурирует белки пищи, оказывает бактерицидное действие, убивая попадающие с пищей микроорганизмы, является инициирующим фактором активации пепсиногена и превращения его в активную форму. В кислой среде желудочного сока некоторые группы пепсиногена протонируются, изменяется его конформация, в результате чего пепсиноген приобретает протеолитическую активность. При этом субстратом активированного пепсиногена служит тоже пепсиноген: одна молекула пепсиногена отщепляет от другой молекулы пепсиногена N – концевую часть включающую 42 аминокислотных остатка. В результате образуется фермент пепсин. Образовавшийся пепсин также может катализировать превращение пепсиногена в пепсин. В этом случае активацию можно представить как циклический процесс с механизмом обратной связи: продукт реакции пепсин ускоряет свое собственное образование.

В результате действия пепсина белки в желудке распадаются на полипептиды; свободные аминокислоты при этом практически не образуются. Пепсин наиболее активно гидролизует пептидные связи, NH2- группа которых принадлежит ароматическим аминокислотам – тирозину, фенилаланину, триптофану.

Дальнейшее превращение высокомолекулярных пептидов и белков, не расщепленных пепсином, происходит тремя эндопептидазами, вырабатываемыми поджелудочной железой в виде предшественников – трипсиногена, химотрипсиногена и проэластазы.

Активация трипсиногена происходит при участии фермента энтеропептидазы, выделяемого клетками кишечника. Энтеропептидаза отщепляет N-концевой гексапептид трипсиногена, в результате чего происходит изменение конформации оставшейся части молекулы и формируется активный центр – получается фермент трипсин. Основное количество трипсиногена активируется трипсином путем аутокатализа.

Трипсин обладает сравнительно узкой субстратной специфичностью, разрывая пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина, т.е. основных аминокислот.

В поджелудочной железе синтезируется ряд химотрипсинов (-, -, – химотрипсины) из двух предшественников – химотрипсиногена А и химотрипсиногена В. Активируются зимогены в кишечнике под действием активного трипсина и химотрипсина.

Рисунок 5 – Активация протеиназ в кишечнике

Химотрипсин обладает более широкой субстратной специфичностью, чем трипсин. Он катализирует гидролиз не только пептидов, но и эфиров, амидов и других ацилпроизводных, хотя наибольшую активность он проявляет по отношению к пептидным связям, в образовании которых принимают участие карбоксильные группы ароматических аминокислот – фенилаланина, тирозина и триптофана.

В поджелудочной железе синтезируется еще одна эндопептидаза ­– эластаза. Название фермент получил от субстрата эластина, который он гидролизует. Эластин богат глицином и аланином, содержится в соединительной ткани. Эластаза обладает широким спектром действия, гидролизуя субстраты, не расщепляемые трипсином и химотрипсином.

В превращении нативных белков и продуктов их гидролиза в тонком кишечнике активное участие принимают экзопептидазы. Карбоксипептидазы синтезируются в неактивном состоянии в поджелудочной железе и активизируются трипсином в кишечнике. Карбоксипептидаза А гидролизует пептидные связи С-концевых аминокислот, образованные преимущественно ароматическими аминокислотами (фенилаланин, тирозин, триптофан), а карбоксипептидаза В-связи, в образовании которых участвуют С-концевые лизин и аргинин.

Аминопептидазы вырабатываются в клетках слизистой оболочки кишечника сразу в активной форме. Из кишечного сока выделены два типа аминопептидаз, различающиеся по субстратной специфичности – аланинаминопептидаза и лейцинаминопептидаза, первая из которых гидролизует пептидную связь, образованную N-концевым аланином, а вторая способна гидролизовать практически любую пептидную связь, образованную N-концевой аминокислотой.

Процесс переваривания пептидов, их расщепление до свободных аминокислот в тонком кишечнике завершают три- и дипептидазы.