Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные понятия термодинамики-потеря.doc
Скачиваний:
170
Добавлен:
12.04.2015
Размер:
615.94 Кб
Скачать

2. Первый закон термодинамики

Первый закон (первое начало) термодинамики – это всеоб­щий закон природы, – закон сохранения и превращения энергии, соответствующий основному положению диалектического мате­риализма о вечности и неуничтожимости движения.

Энергия не исчезает и не возникает из ничего, а только превращается из одного вида в другой в строго эквива­лентных соотношениях.

Впервые этот закон в 1842 г. сформулировал немецкий фи­зик Ю. Мейер, врач по образованию.

В зависимости от вида системы I закон термодинамики имеет различные формулировки.

В изолированной системе внутренняя энергия постоянна (∆U = 0).

Для закрытой системы I закон термодинамики устанав­ливает связь между теплотой, полученной или выделенной сис­темой в некотором процессе, изменением внутренней энергии системы и произведённой при этом работой.

Если к закрытой системе подвести теплоту Q, то эта энергия расходуется на увеличение внутренней энергии системы U и на совершение системой работы против внешних сил окружающей среды:

Q = U + А.

В изобарно-изотермических условиях, в которых функцио­нируют живые организмы, совершаемая работа А = pV, тогда:

Q = U + pV = (Uкон Uнач) + (pVкон pVнач) =

= (Uкон + pVкон)(Uнач + pVнач)

Сумму внутренней энергии системы и произведения объёма на давление (U + pV) называют теплосодержанием или энтальпией.

Энтальпия (Н) термодинамическая функция, характери­зующая энергетическое состояние системы при изобарно-изотермических условиях.

Раздел химии, занимающийся изучением тепловых эффектов химических реакций, называется термохимией.

Теплота, полученная системой при р, Т = const, равна при­ращению энтальпии системы Н:

Q = Hкон Ннач = Н.

Абсолютное значение энтальпии, как и абсолютную величину внутренней энер­гии системы, опреде­лить невозможно, поэтому в термодинамических расчётах используют лишь изменение энтальпии, происходящее при переходе системы из одного состояния в другое. Величина Н не зависит от пути процесса, а определяется, как для любой другой функции со­стояния, разностью энтальпий, характеризующих конечное и начальное состояния системы:

Н = Hкон Ннач.

Количество теплоты, которое выделяется или поглоща­ется при прохождении химической реакции в изобарно-изо­термических условиях, характеризуется изменением эн­тальпии системы и называется энтальпией реакции (Нр).

Химические реакции и физико-химические процессы под­разделяются на экзотермические и эндотермические.

Экзотермические процессы сопровождаются выделением энергии из системы в окружающую среду.

В результате экзотермических процессов энтальпия системы уменьшается (Нкон < Hнач), следовательно:

Нэкзо = (Нкон Hнач ) < 0.

Эндотермические процессы сопровождаются поглоще­нием энергии системой из окружающей среды.

В результате эндотермических процессов энтальпия системы увеличивается (Hкон > Hнач), следовательно:

Нэндо = (Нкон Hнач ) > 0.

Энтальпия системы является экстенсивным параметром и зависит от количества вещества, температуры и давления, по­этому изменение энтальпии в результате химической реакции или других процессов определяют при стандартных условиях.

Стандартные условия: количество вещества 1 моль;

давление 760 мм рт. ст. = 101 325 Па;

температура 298 К ≈ 25 °С.

Термодинамические параметры и функции состояния системы или их измене­ния, измеренные при стандартных условиях, обозначаются со­ответствующим символом с верхним индексом "°". Стандарт­ную энтальпию реакции обозначают , кДж/моль.

Стандартная энтальпия химической реакции представляет собой энерге­тическую характеристику реакции, проводимой при стандартных условиях. Химические уравнения, для которых указано значение энтальпии реакции, называются термохими­ческими уравнениями. Например, для реакции горения 1 моль ацетилена:

С2Н2(г) + 2,5О2(г) = 2СО2(г) + Н2О(г); =1256 кДж/моль.

Кроме тепловых эффектов термохимические уравнения обязательно содержат индексы, обозначающие агрегатные состояния исходных веществ и продуктов реакции. Следует также иметь ввиду, что термохимические уравнения могут иметь дробные стехиометрические коэффициенты; это связано с тем, что тепловой эффект реакции рассчитывается только на 1 моль продукта реакции или на 1 моль одного из реагирующих веществ.

Для оценки энергетического состояния веществ в термодинамике используются значения стандартных энтальпий обра­зования этих веществ, обозначаемые ∆Н°[вещество (агрегатное состояние)], кДж/моль.

Стандартная энтальпия образования простых веществ в их наиболее термодинамически устойчивом агрегатном и аллотропном состоянии при стандартных условиях принимается равной нулю.

Например, для кислорода Но 2) = 0, для графита графит) = 0. Однако стандартная энтальпия образования озона Hо 3) = 142,2 кДж/моль, алмаза Но алмаз) = 1,8 кДж/моль.

Стандартная энтальпия образования сложного веще­ства равна энтальпии реакции получения 1 моль этого вещества из простых веществ при стандартных усло­виях.

Например, стандартная энтальпия образования этанола равна стандартной энтальпии гипотетической реакции:

графит + 3Н2(г) + 0,5О2 (г) = С2Н5ОН(ж);

Но 2Н5ОН) = 277 кДж/моль.

Значение стандартной энтальпии образования сложного ве­щества зависит от природы вещества и его агрегатного состоя­ния. Числовые значения стандартных энтальпий образования веществ приводятся в справочниках.

Энтальпию реакции можно определить как эксперименталь­но, так и методом расчёта с использованием стандартных энтальпий образования веществ, участвующих в химической реак­ции, на основе закона, открытого российским учёным Г. И. Гессом (1840 г.).

Энтальпия реакции, то есть тепловой эффект реакции, за­висит только от природы и состояния исходных ве­ществ и конечных продуктов и не зависит от пути, по которому протекает реакция.

Закон Гесса является вполне строгим для процессов, происходящих при постоянном давлении или при постоянном объёме. Для этих процессов он может рассматриваться как частная форма выражения закона сохранения энергии применительно к химическим реакциям.

Герман Иванович Гесс (7.VIII 1802—12.XII 1850). Русский химик, академик Петербург­ской АН (с 1830). Родился в Женеве 7 августа 1802 г. Окончил Дерлтский университет (доктор медицины, 1825). Совершенство­вал образование в Стокгольмском университете (1825). С 1830 – профессор Петербургского технологического института, в 1832–1849 –Петербург­ского горного института.

Один из основоположников тер­мохимии. Значительно раньше J. П. Ю. Ю. Томсена и П. Э. М. Бертло выдвинул (1840) положе­ние, согласно которому величины тепловых эффектов реакции могут служить мерой химического сродства.

Открыл (1840) основной за­кон термохимии – закон постоян­ства количества тепла, по которо­му тепловой эффект реакции зави­сит только от начального и конеч­ного состояний реагирующих ве­ществ, а не от количества стадий процесса (закон Гесса). Доказал (1842), что при смешении нейтраль­ных солевых растворов тепловой эффект отсутствует (правило термонейтральности). Установил, что при нейтрализации грамм-эквива­лента любой сильной кислоты сильным основанием всегда выде­ляется одинаковое количество тзп-ла (13,5 ккал). Открыл и опреде­лил (1830–1834) состав четырех новых минералов – вертита, уваровита, гидроборацита и фольбортита. Предложил (1833) способ полу­чения теллура из теллурида сереб­ра — минерала, который был им впервые изучен. Изучал (1832) окислы кобальта. Установил ката­лизирующее и адсорбционное свойства мелкораздробленной платины. Одним из первых изучал состав кавказских нефтей. Открыл сахарную кислоту. Написал учебник «Основания чистой химии» (1831), выдержавший семь изданий.

В его честь теллурид серебра назван гесситом.

Закон Гесса можно проиллюстрировать следующей схемой:

Переход системы из начального состояния в конечное можно осуществить разными путями:

 непосредственно через реакцию, энтальпия которой равна Hр;

 в результате двухстадийного процесса через промежуточ­ное состояние А, энтальпии отдельных стадий которого равны соответственно H1 и H2;

 через ряд реакций трёхстадийного процесса через проме­жуточные состояния В и С, для которых энтальпии отдельных стадий равны соответственно H3, H4 и H5.

В соответствии с законом Гесса:

Hр = H1 + H2 = H3 + H4 + H5.

В термохимических расчётах большое значение имеют след­ствия из закона Гесса.