Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экономическая ТЕОРИЯ / Занг В.Б. Синергетическая экономика. Время и перемены в нелинейной экономической теории. 1999

.pdf
Скачиваний:
148
Добавлен:
20.04.2015
Размер:
7.17 Mб
Скачать

нелегко. Однако в некоторых частных случаях оно может быть решено приближенно (Николис и Пригожин, 1977). Например, если в задаче нас интересует в основном макроизмерение, то разумно положить

где необходимо определить функции f и N. Поскольку локальными аспектами некоторых явлений, например флуктуациями в малых «объемах», можно пренебречь, асимптотическое решение может быть получено из предположения, что величина N очень велика и положительна. В этом случае подстановка (7.3.7) в (7.3.5) приводит к

где α = AN, β = BΝ, t* = tN, и А, В = О (1). Так как N очень велико, член, содержащий вторую производную, умноженную на 1/N, может быть опущен. Решение для (7.3.8) ищем в виде

где коэффициенты разложения связаны с моментами функции распределения вероятности. Например, α1 = Ε(x)/Ν, α2 = E(y)/N и bij являются дисперсиями величин x и у. Подставляя (7.3.9) в (7.3.8), получим

Если пренебречь членами, содержащими 1/N, система (7.3.10) будет допускать стационарное решение

α1 =B, α2= А,

(7.3.11)

которое идентично соответствующему равновесному в системе «хищник-жертва». Однако в нашей модели более важно знать свойства дисперсий. Имеем

Видно, что эти уравнения не имеют решений, не зависящих от времени. Предположим, что при t = 0 система описывалась пуассоновским распределением переменных x и у. Это предположение означает, что bij(t = 0) = 0. Решение уравнения (7.3.12), удовлетворяющее начальным условиям, имеет вид

Мы видим, что хотя начальные вариации нулевые и система является макроскопической, вариации bii (i = 1, 2) во времени возрастают, мгновенно отклоняясь от своих начальных значений. Достичь нового равновесия вариаций невозможно. Из стохастических представлений макроскопическое равновесие (7.3.11) бессмысленно даже в пределе малых флуктуации, соответствующих отбрасыванию членов, убывающих как 1/Ν. Поведение системы подвержено аномальным флуктуациям, которые линейно возрастают во времени на фоне периодического «шума», имеющего частоту, вдвое превышающую частоту макроскопического движения. Эти флуктуации приводят к изменению порядка величины членов, содержащих множители 1/N, которые не могут более не учитываться, и, в итоге, к сдвигу средних значений от стационарного состояния в сторону динамического режима. Это означает, что флуктуации играют решающую роль, качественно изменяя выводы макроскопического анализа.

Возможность спонтанного отклонения от режима в результате флуктуации дает поразительный пример нарушения закона больших чисел. Как показано Николисом и Пригожиным (1977), эта совершенно новая ситуация является следствием «связи», в результате которой переходы под влиянием стохастических переменных, Даже в больших системах, не являются статистически независимыми событиями.

Формализм рождения-гибели обладает некоторыми ограничениями. Например, подход, при котором вероятности переходов вычисляются в терминах агрегированных переменных, относящихся ко всей системе, означает; что в описании сохраняются только исключительные флуктуации. Рассмотрение системы как целого Может привести к подавлению флуктуации, связанных с такими свойствами, как размер, диапазон, в котором они проявляются, и Длина корреляции, в пределах которой две части системы «чувствуют» друг друга.

7.4.Неравновесная модель часов Шумпетера

Вкруг фундаментальных проблем экономики входит проблема вывода макроскопических свойств многокомпонентных систем на основе элементарных микрокопических свойств составляющих компонент. Одна из задач такого подхода состоит в выяснении того, какие именно макропеременные при заданных условиях могут оказаться значимы для описания динамики системы. Например, весьма популярно строить каждую экономическую теорию, исходя из предположения о рациональном поведении домохозяйств и фирм. Как соотносятся между собой при этом сумма частей и целое, является для экономики существенным вопросом.

Вцелом, в экономике принято считать, что даже если поведение каждой фирмы (или домохозяина) на микроуровне вызвано неопределенным механизмом, макроповедение системы может быть описано несколькими совокупными переменными (средними значениями), что позволяет проводить дальнейший анализ. Предложены и теории, которые учитывают неопределенности, хотя большинство их ограничено рамками статического анализа.

Очень общий количественный подход для анализа динамических процессов в социальных системах был предложен недавно Вайдлихом и Хаагом (1983). Это подход «статистической физики» — он развит на основе понятий пространства отношений, пространства социо-конфигураций и ситуаций. Авторы пытаются описать динамику макроскопических переменных, используя вероятностное феноменологическое описание микромира. Явления, рассматриваемые в рамках этого приближения, в микромасштабе принадлежат области социо-политической психологии индивидуумов, с вытекающими отсюда коллективной материальной, экономической и абстрактной структурами в макромасштабе.

Мы опишем этот подход и приведем пример его приложения к экономике.

Пусть рассматриваемое сообщество состоит из N индивидуумов и подразделяется

на Ρ подгрупп Pk (k = 1,... ,Р), каждая из которых состоит из Nk, членов: N = N1 + ... + Nk + … + Np. Поскольку имеют место процессы рождения/смерти и иммиграции/эмиграции, величины Nk могут меняться. Предполагается, что существует некоторое количество А различных «аспектов жизни», относящихся к таким областям, как религия, образование, потребление и производство, в которых индивидуумам

приписываются определенные роли. Для каждого аспекта α = 1,..., А) существует da различных позиций (iа = 1,.. .,dа). Пространство позиций

G размерности А состоит из обозначаются вектором i = {i1,..., задается как

А различных аспектов. Позиции индивидуума iA}. Число возможных комбинаций позиций L

Индивидуумы имеют в различные позиции. Пусть nki — число членов Pk, имеющих позицию i. Общее число индивидуумов, имеющих позицию i, обозначим через Ni . В соответствии с этими определениями имеем

Поскольку nki может изменяться, мы можем ввести определение социоконфигурации в момент t

которая описывает микросостояние системы. Социо-конфигурация состоит из С = PL неотрицательных целых элементов.

Позиция и социо-конфигурация относятся, в основном, к психологии и активности индивидуумов. Для того чтобы описать развитие общества, в дополнение к этим переменным нужно учесть материальное состояние общества. Материальное состояние включает в себя количественные характеристики, такие, как приемлемые экономические параметры, степень эффективности правительства и тому подобное. Предположим, что существует количественная мера уb (b = 1,..., S), которая охватывает S-мерное пространство ситуаций Η. Ситуация описывается ситуационным вектором

Принадлежащим H.

Таким образом, динамика общества описывается изменением во времени социоконфигурации и ситуационного вектора. Очевидно, что взаимодействие между n(t) и y(t) вызывает довольно сложное Поведение. Вайдлих и Хааг применили эти понятия для объяснения процессов миграции и/или рождаемости-смертности популяции, процессов формирования общественного мнения и эволюции промышленности. Ниже мы приведем модель индустриальной динамики, предложенную Вайдлихом и Хаагом

(1983, гл. 5).

Модель ограничена «товарным сектором Шумпетера», который во многом идентичен частному и государственному промышленному производству. В основном изучаются поведение инвестора (и инноватора) и стратегия его поведения в условиях конкуренции что означает пренебрежение влиянием макроэкономики и инвестициями, «индуцированными» спросом. Назначение модели — дать частную теорию неравновесного движения индустриальных систем стран и регионов. Модель строится по схеме «часов Шумпетера» в том смысле, что ее движущиеся части, механизм движения и системы управления являются типично шумпетеровскими. В модели часов Шумпетера при объяснении быстротекущих неравновесных экономических процессов делается упор на существование активных внешних микроэкономических сил и сильного сдерживающего и балансирующего воздействия со стороны предложения. Модель строится на основе микроэкономических различий, т. е. на гетерогенности продукции и производственных процессов. Эти различия начинают играть роль на нижнем подуровне экономической системы (на уровне фирм, рынков, промышленности). Формирование таких различий является объективным фактором инвестиционной стратегии предпринимателей, которые в соответствии с их текущими намерениями подразделяются на «экспансионеров» и «рационализаторов». Попеременные сдвиги портфеля инвестиций от инвестиций преимущественно экспансионного характера к инвестициям преимущественно рационализационным вызывает промышленные флуктуации. В ходе циклического процесса в поисках монопольных прибылей инноваторы и предприниматели-пионеры захватывают лидерство, действуя в направлении, противоположном циклическому движению инвестиционных стратегий.

Необходимо сказать, как соотносится эта частная модель с общей концепцией, изложенной выше. Конфигурация инвесторов, которую требуется определить, является частным случаем социо-конфигурации. Рассматриваемые здесь индивидуумы являются малыми группами предпринимателей, находящихся в состоянии принятия инвестиционных решений. Принятые ими экономические решения непосредственно связаны с материальными переменными — с «индексом структуры инвестиций», который мы определим ниже.

Рассмотрим сначала инвестиционные стратегии, а затем «конфигурацию» инвесторов. Предполагается, что множество стратегий инвестора содержит только две альтернативы: экспансионные (расширение производства) либо рационализационные (совершенствование производства) проекты. Таким образом, общий объем инвестиций I(t) составляет

где Е и R — (неотрицательные) объемы, соответственно, экспансионных и рационализационных инвестиций. Если обозначить через E0{t) и R0(t) соответствующие объемы E(t) и R(t), усредненные по медленной переменной, можно разложить Е и R в сумму вида

где B(t) называется осциллирующим сдвигом, причем Е0 < B(t) < R0 . Индекс структуры инвестиций определяется как

где Z0 = (Е0 – R0)/I, z = 2В/I, -1 < Z(t) < 1. Работу часов Шумпетера продемонстрируем, наблюдая неравновесное движение индекса структуры инвестиций Z(t) (или z(t)).

Для того чтобы лучше пояснить понятие конфигурации инвесторов, предположим, что каждая фирма может принимать участие только в одном проекте; и что все проекты (общее число которых составляет 2N) имеют один и тот же финансовый объем.

Рассмотрим воображаемого «нейтрального» инвестора, который ведет себя в соответствии со средней долговременной инвестиционной тенденцией. Его индивидуальный инвестиционный проект объема i = I/2N состоит из инвестиций в расширение производства (экспансионной части) e0 и инвестиций в совершенствование производства (рационализационной части) r0, так, что

где e0 = E0/2N, r0 = R0/2N. Однако реальные инвесторы ведут себя не так, как условный нейтральный инвестор. Существуют инвесторы Е- типа (R-типа), которые вместо средней устоявшейся тенденции отдают предпочтение экспансионным (рационализационным) инвестициям. Для инвесторов Е- и R-типов проект, имеющий объем i, может быть записан как

где еE = e0 + β, rЕ = r0 -β, eR = e0 - β, rR = r0 + β, β > 0. По сравнению с нейтральным инвестором, для инвестора E-типа величина β добавляется к экспансионной

составляющей инвестиций, тогда как для инвестора R-типа — к рационализационной части. Для простоты мы предполагаем, что для инвесторов обоих типов это одна и та же величина.

Пусть nЕ обозначает число инвесторов E-типа, а nR — число инвесторов R-типа. Имеем

Структура инвестиций характеризуется парой [E(t), R(t)], а стратегия инвестиционной деятельности — парой {nЕ(t), пR(t)}. Назовем пару {nЕ, пR} конфигурацией инвесторов и определим индекс конфигурации инвесторов как

где n(t) = [nE(t) - пR (t)]/2, причем -1 ≤ x(t) ≤ 1. Если конфигурация инвесторов изменяется согласно переходу

или

т. е. если инвестор R-типа становится инвестором E-типа или, наоборот, целое n(t) может увеличиться либо уменьшиться на единицу. Возможны также многоступенчатые изменения конфигурации инвесторов (п n — σ, где σ целое).

Из определений видим, что общий объем экспансионных и рациоционализационных инвестиций задается выражениями

что в комбинации с (7.4.2) дает

или

В выражении (7.4.8) отражен тот факт, что флуктуирующая часть z(t) индекса структуры инвестиций Z(t) пропорциональна индексу конфигурации инвесторов x(t). Таким образом, осцилляции конфигурации инвесторов будут проявляться в осцилляциях индекса структуры инвестиций. Выражение (7.4.8) определяет соотношение между структурой инвестиций и конфигурацией инвесторов.

Ниже мы выведем уравнение движения двух компонент инвестиций — для конфигурации инвесторов и для предрасположенности к инвестициям, которые математически выражают изменения индустриальной экономики.

Микроэкономическое приближение изменений конфигурации инвесторов {пЕ,пR} включает в себя идею вероятностного перехода индивидуума из R-типа в E-тип и обратно. Стохастический подход используется для описания поведения инвесторов в условиях неопределенности, содержащей фактор риска.

Переход от одной конфигурации инвесторов к другой может быть единичным, связанным с инновациями продукции или инновациями процесса производства одним инвестором, или многократным, что часто имеет место из-за подражания (имитации). Такие процессы являются неопределенными ввиду присутствия фактора риска и влияющих на поведение других факторов. Определим следующие величины:

р→{п) — вероятность перехода в единицу времени от инвестиций R-типа к инвестициям E-типа;

р(n) — вероятность перехода в единицу времени от инвестиций E-типа к инвестициям R-типа.

Вероятности индивидуальных переходов приводят к понятию полной вероятности изменения конфигурации инвесторов. Переход { пE, пR} { пE + 1, пR - 1} имеет место при полной вероятности перехода

Аналогично, для перехода { пE, пR } { пE – 1 пR + 1} имеем

 

Вероятность того, что в момент t конфигурация инвесторов будет иметь вид

{

пE, пR }, обозначается как

 

Поскольку одна из конфигураций всегда реализуется, в любой момент t имеем

 

Мастер-уравнение описывает движение вероятности p(n;t). Вероятность p(n;ί) конфигурации п может возрастать вследствие переходов к n от одной из двух соседних конфигураций n—1 или п + 1,

причем вследствие обратных переходов от n к n — 1 или n + 1 вероятность р(п; t) будет уменьшаться. Из рассмотрения такого баланса немедленно получим следующее мастер-уравнение:

вкотором первый член описывает поток вероятности перехода к конфигурации n

вединицу времени, а второй член — поток от конфигурации п. Мастер-уравнение (7.4.13) представляет собой 2N+1 связанных дифференциальных уравнений относительно p(n;t) и в общем виде трудноразрешимых. Предположим для простоты,

что р(п;t) имеют выраженный пик и унимодальны относительно своих средних n t:

Дифференцируя (7.4.14) по времени и подставляя в производную соотношение (7.4.13), приходим к соотношению

что приближенно можно записать как

Из (7.4.6) и (7.4.15) мы можем получить уравнение относительно средней величины x

где скорость K( x t), зависящая от x t, выражается как

Мы можем переписать (7.4.16) как

где x представляет собой x t. Вайдлих и Хааг записывают (7.4.17) как

Они предполагают, что внешняя сила зависит от текущей конфигурации x(t) всех инвесторов системы и от вероятностей переходов, изменяющих эту конфигурацию. Последние, в свою очередь, зависят от всех инвестиционных склонностей, параметризованных величинами α и k. Кроме того, в (7.4.18)

и δ скалярный параметр, используемый в качестве временного масштаба.

Параметр α в (7.4.18) является «альтернатором», представляющим собой переключатель предпочтений инвестора между инвестициями Е- и R-типов в заданных условиях. При определении вероятностей переходов альтернатор α используется как параметр, подчиняющийся следующему правилу: положительность α означает, что предпочтение отдается переходу к инвестициям E-типа; при отрицательном α выбирается переход к инвестициям R-типа. Предполагается, что альтернатор зависит от времени. Этот параметр играет важную роль в формировании циклического движения (часов Шумпетера). Параметр k — это «координатор», отражающий интенсивность взаимодействия индивидуальных инвесторов в заданных условиях. Другими словами, параметр k описывает склонность инвесторов согласовывать свое поведение с поведением остальных. Координационный эффект будет проявляться как синхронизация и подражание инвестора инвестициям, предпринятым другими.

Опишем теперь динамику альтернатора α — параметра выбора стратегии инвестора при внешней силе К. Прежде всего, заметим, что если большинство инвесторов имеет тенденцию максимизировать выгоду в данный момент времени, расширяя (рационализируя) деловые операции, так что x(t) > 0 (x(t) < 0), то некоторые инноваторы и первопроходцы (задающие направление) будут пытаться улучшить свои рыночные позиции проведением нонконформистской стратегии, пытаясь получить сверхприбыль в ходе изменения курса. В то время, когда экспансионными инвестициями, предпринятыми большинством инвесторов, намечается определенный подъем, эти люди (задающие направление) стремятся изменить направление своих усилий и начать снижать границы цен, проводя соответствующие инвестиции. В этом случае остальные вынуждены подстраиваться и также проводить рационализационные инвестиции, ожидая дальнейшего падения цен. Аналогичным образом, когда намечается снижение цен вследствие обратного воздействия инвестиций в рационализацию (совершенствование производства), предпринятых большинством инвесторов, первопроходцы начинают обратное движение к качественному сектору в пределах

Соседние файлы в папке Экономическая ТЕОРИЯ