Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экономическая ТЕОРИЯ / Занг В.Б. Синергетическая экономика. Время и перемены в нелинейной экономической теории. 1999

.pdf
Скачиваний:
148
Добавлен:
20.04.2015
Размер:
7.17 Mб
Скачать

где

Коэффициенты для низших степеней ε определяются из соотношений

Из (5.3.12) можно получить точные значения величин хj, ωj (j = l,2,3), σ1 и σ2. Определим D как

где х = х2ε2/2+O(ε4). В соответствии с теоремой факторизации (см. Йосс и Джозеф, 1980, гл. VII), если D положительно, цикл неустойчив, если отрицательно - устойчив. Таким образом, мы определили условия устойчивости для теоремы 5.3.1.

Мы не выписали здесь точных выражений для rj, ωj, xj и других параметров, поскольку они слишком громоздки. Рисунок 5.4 иллюстрирует поведение системы. Радиус цикла зависит от параметра бифуркации: при удалении параметра от критического значения радиус растет.

Процентная ставка лежит то ниже, то выше точки равновесия, т.е. хотя она и может приближаться к значению R0, но не может постоянно оставаться ему равной. Приблизившись к равновесию, она стремится от него прочь. Ее побуждает к этому нелинейный характер взаимодействия процентной ставки и объема производства. Аналогично можно объяснить поведение национального дохода У.

Из (5.3.3) имеем

где δR(t) = {R(t) - R0}/2ε, δY(t) = {Y(t) – Y0}/2ε. Так как δY(t) периодическая функция, которая «не зависит» от δR(t), видим, что взаимодействие между двумя переменными может быть весьма сложным.

5.4 Характер неравновесности в модели без равновесий

В этом разделе мы дадим приложение теоремы Хопфа о бифуркациях к модели управления запасами, развитой в рамках макроэкономики, не обладающей равновесием. Эта модель первоначально была предложена в работе Экальбара (1985). Занг (1989f) уточнил ее введением нелинейной функции регулирования производства. Дальнейшее изложение основывается на результатах Занга.

Пусть экономика состоит из двух секторов — домохозяйств и фирм, и трех видов товара: денег, труда и продуктов производства. Продукты производства могут накапливаться фирмами, но не домохозяевами. Фирмы имеют предварительные ожидания (оценки) спроса продукции и загружают производство с учетом ожидаемого сбыта, поддерживая заданное отношение между сбываемым и имеющимся в наличии (накопленным) товаром. Производство понуждается к функционированию своими собственными мощностями.

Предполагается, что домохозяева и фирмы встречаются на рынке труда. Текущая величина обмена на рынке труда задается формулой L = min(L*, Ld), где L* — фиксированный объем труда, предлагаемого домохозяевами к продаже, Ld объем труда, который фирмы пытаются купить. Предполагается, что Ld = Ld (V, SE), где V — объем запаса товаров, SE объем ожидаемого сбыта. Предполагается, что в соответствующих единицах измерения текущий объем выхода продукции равен dL(d > 0). Предполагается также, что фирмы управляют производством таким образом, что V = f(SE), где f' > 0 и f" не равно нулю. Неравенство f' > 0 означает, что величина требуемых запасов (накоплений) товара является

возрастающей функцией SE. Это соответствует литературным данным по микронакоплениям.

Предположим, что эффективный спрос потребителей S направлен на максимизацию функции полезности Кобба-Дугласа U = ASb(M/p)l-b, отражающей сбыт труда как товара и бюджетные ограничения, где р — цена товара, М/р желаемый баланс, А (А > 0) и b (0 < b < 1) — параметры. Функция S задается соотношением

где а = bМ0/р, с = wb/pd, w — номинальная заработная плата, а М0 — нижний уровень денежного потребления населения.

Фирмы производят столько продукции, сколько, как им кажется, они могут продать, SE, плюс поправку на накопление f(SE) — V. Значит, потребность в труде задается формулой Ld = [SE + f(SE) — V]/d. С другой стороны, если на рынке труда имеется недостаток, объем производства не может превысить величину Q* = dL*. Текущий выпуск продукции должен составлять

В этой неравновесной модели рынок труда также не имеет равновесия, но фирмы могут поддерживать производство, позволяющее удовлетворять эффективный спрос населения. С другой стороны, хотя рынок товаров всегда находится в равновесии, фирмы могут сталкиваться с неравновесной ситуацией, если желаемое и реальное накопления окажутся различны.

Мы будем предполагать, что изменение функции V равно Q — S, и что SE адаптивно регулируется в соответствии с разностью S — SE. Динамика системы описывается уравнениями

Кривая переключений определяется уравнением SE + f(SE) — V = Q*. Плоскость (V, SE) разделена этой кривой на две части:

Легко видеть, что, если текущая траектория принадлежит области W2, система линейна. Этот случай детально изучен Экальбаром (1985).

Мы остановимся только на случае (V, SE) W1. Именно в этом случае на рынке труда возможна безработица. Динамика системы описывается уравнениями

Единственная точка равновесия задается соотношениями

Собственные значения zi равны

Пусть c0 удовлетворяет условию 2с — 2 + сf' = 0. Так как с0 = 2/(2+f') и f' > 0, имеет место неравенство 0 < c0 < 1. Поскольку с = wb/pd, где 0 < b < 1, условие 0 < c0 < 1 вытекает из того, что pd > 0. Однако из Q = dL мы видим, что w < pd означает, что прибыль фирмы будет положительной. Можно найти и соответствующее значение c0 функции с. При с = c0 собственные значения равны соответственно iv и —iv, где v = (1 — c0)1/2. Будем рассматривать с как бифуркационный параметр, имеющий критическое значение c0. Так как с = wb/pd, любое изменение величин w, b, р или d приводит к сдвигу параметра с. Пусть х = с

c0. То собственное значение, которое при х = 0 равно iv, обозначим через z(х). Дифференцирование z(x) по переменной х дает

Из (5.4.7) видно, что действительная часть zx(0) положительна. Следовательно, потеря устойчивости установлена. При х = 0 выполняется бифуркационная теорема Хопфа.

Теорема 5.4.1. В окрестности равновесия для малых x существует предельный цикл. Бифуркационный цикл периода 2π/s(ε) задается уравнениями

где ε — амплитудный параметр разложения и

Более того, бифуркация является суперкритической.

Эта теорема доказана Зангом (1988f). Соответствующее периодическое движение изображено на рис. 5.5.

Рис. 5.5. флуктуация экономики (а) от с0 к с, (b) от c1 к с2.

Если мы сможем поддерживать параметр ε достаточно малым, мы всегда будем иметь цикл в области W1.

Чтобы подробнее пояснить циклический характер поведения системы, разделим цикл на четыре части, как на рис. 5.5b. Пусть система первоначально находилась в точке D, в которой скорость изменения накоплений равна нулю. С этого момента ожидаемый объем сбыта начинает падать. Так как объем производства фирм, Q, равен потребительскому спросу, S, в то время как предполагаемый объем сбыта превышает спрос, производители должны предвидеть будущее снижение сбыта по сравнению с предполагаемым в настоящее время. Следовательно, возникнет снижение величины S . Далее система покидает точку D, а величина SE продолжает уменьшаться. Однако, поскольку Q = SE + f(SE) - V, уменьшение SE приведет к снижению величины Q. Так как потребительский спрос является функцией объема производства, уменьшение ожидаемого объема сбыта неявно приведет к снижению потребительского спроса. Поскольку скорость изменения накоплений равна Q — S, и обе величины Q и S уменьшаются, скорость изменения накоплений может оказаться и положительной, и отрицательной. Взаимодействие этих сил приводит к движению системы по направлению к точке А.

В точке А система не может остановиться, потому что объем производства становится ниже спроса. Остальные участки движения по циклической траектории могут быть объяснены подобным же образом. Движение будет повторяться до тех пор, пока не возникнут следующие бифуркации.

Поскольку одним из достоинств этой модели является объяснение наблюдаемого в реальности циклического поведения отношения накопления и сбыта, следует не только указать на факт цикличности, но и изучить его характер. В области W1 текущее значение нормы товарообмена дается формулой

Следовательно, этот коэффициент тоже периодичен (рис. 5.6).

5.5 Монетарные циклы в обобщенной модели Тобина

В разд. 3.3 мы уже говорили о модели Тобина (см. также Тобин, 1965, 1969). Равновесие этой системы неустойчиво. Мы пересмотрим анализ, данный Тобином. Обобщенная модель, представленная в этой главе, принадлежит Зангу (1990Ь). Хотя модель, которую мы называем здесь обобщенной моделью Тобина, похожа на модель Тобина, сформулированную в разд. 3.3, они весьма разнятся в динамике цен, свойствах устойчивости и некоторых других

аспектах. Мы пренебрежем здесь эффектами амортизации, т.е. в формуле (3.3.8) будем считать d = 0. Тем не менее, соотношения (3.3.6) и (3.3.8) для обобщенной модели остаются справедливыми. Все переменные, которыми мы будем тут пользоваться, имеют тот же смысл, что и в разд. 3.3.

В обобщенной модели Тобина предполагается, что изменения цен отражают как избыточный спрос (или избыточное предложение), так и адаптивные ожидания. Мы принимаем за основу точку зрения Вальраса о том, что, когда имеет место избыточный спрос, цены растут, а когда имеет место избыточное предложение — падают. По закону Вальраса избыточный спрос на товары и услуги равен избыточному по сравнению с равновесным предложению (точнее, его потоку) реальных средств. Не принимая в расчет инфляционные ожидания, мы можем предположить следующую динамику

где αположительный постоянный параметр, q представляет ожидаемую скорость инфляции. В случае полной взаимозаменяемости двух понятий — капитала и денег, можно считать, что функция g удовлетворяет следующим условиям: gk = +∞, gq = -∞, а в случае неполной их тождественности — gk > 0 и gq < 0.

Предполагается, что ожидаемая скорость изменения цен может отличаться от реальной скорости инфляции. Эта динамика может иметь вид

где β — так называемый «коэффициент ожидании».

Завершим построение модели записью уравнений, которые будем называть обобщенной моделью Тобина

где первые два уравнения соответствуют (3.3.6) и (3.3.8) (с учетом d = 0). Положительное длительное равновесие (k0, x0, q0) определяется как решение уравнений

Из (5.5.4) имеем

что отражает отнюдь не нейтральную роль денег для модели в том смысле, что отношение «капитал/труд» в монетарной модели меньше, чем в немонетарной. Если х0 = 0, имеем sf(k0)/n = k0 - как в модели Солоу. Если х0 положительно, то sf(k0)/n > k0, или f(k0)/k0 > n/s, из чего и следует факт отсутствия нейтральности.

Так как нас интересует только устойчивость равновесия и локальное поведение системы, выпишем систему вблизи равновесия в локальном виде. Введем переменные

где (k, х, q) удовлетворяет (5.5.3), а вектор U = (U1, U2, U3)T достаточно мал. Подстановка

(5.5.5) в (5.5.3) приводит к

где A — якобиан, вычисленный в точке равновесия, a N(U, U) квадратичный член.

Явный вид квадратичного члена N(U, U) выписывать не будем, поскольку в дальнейшем он не используется. Введем величины

(5.5.8)

Собственные значения якобиана ΘI определяются из соотношения

Необходимые и достаточные условия устойчивости равновесия известны как критерий Рауса-Гурвица, именно: (i) аi > 0; и (ii) a1a2 a3 > 0. Как показано в работах БенхабибаМийао (1981) и Занга (1990b), в зависимости от значений параметров равновесие исследуемой нами системы может оказаться как устойчивым, так и неустойчивым. Например, если мы движемся от адаптивных ожиданий в сторону точного предвидения, может возникнуть неустойчивая седловая точка. Чтобы проиллюстрировать это утверждение, рассмотрим, что происходит в точке равновесия при возрастании объема денежной массы. Немедленным следствием этого является повышение уровня цен, и реальный объем денежных запасов стремится возвратиться к прежнему уровню, однако первоначальное возрастание денежной массы приводит к повышению ценовых ожиданий и снижает накопленный капитал. Оба последних эффекта вызывают падение денежного предложения и могут стаять причиной того, что объем денежных запасов будет превышать свое равновесное значение. Если денежное предложение продолжает падать ниже уровня равновесия, переменные меняются местами:

объем накоплений капитала возрастает, а ожидания снижаются. В сочетании с прямым влиянием объема денежных запасов на денежные накопления это приведет теперь к изменению направления динамики денежных запасов. Эти соображения наводят нас на мысль о возможности существования долговременных осцилляции.

Доказательство существования бифуркации Хопфа в обобщенной модели Тобина принадлежит Бенхабибу и Мийао (1981). Их результаты можно сформулировать в виде следующей теоремы:

Теорема 5.5.1. Если существует такой набор значений параметров, который обеспечивает устойчивость равновесия, можно найти такое значение β0, при котором якобиан системы имеет пару чисто мнимых собственных значений. Более того, существует непрерывная функция v(ε)[v(0) = 0] параметра ε, такая, что когда параметр ε достаточно мал, обобщенная модель Тобина имеет непрерывное семейство периодических решений (k(t, ε), x(t, ε), q(t, ε))T, которое при ε → 0 стягивается к точке равновесия (k0, х0, q0).

Эта теорема весьма важна, так как доказывает существование регулярных колебаний в системе. Если цикл устойчив, такие колебания будут продолжаться бесконечно долго. Таким образом, неравновесное экономическое развитие отныне не следует рассматривать как быстротекущий процесс, и обобщенная модель Тобина становится пригодной для описания деловых циклов. Мы продолжим исследование Бенхабиба и Мийао с тем, чтобы (i) найти условия устойчивости циклов; (ii) дать точную интерпретацию параметра ε; (iii) найти явное выражение для циклических траекторий; (iv)

чтобы определить, в каких случаях бифуркация Хопфа является суперкритической либо субкритической. Прежде всего, покажем, что если якобиан имеет пару чисто мнимых собственных значений, то все три задаются формулами

Как установлено Бенхабибом и Мийао, все аi (i = 1, 2, 3) положительны. Наличие чисто мнимых собственных значений означает, что (5.5.9) можно переписать к следующему виду:

(5.5.11)

Следовательно, соотношения (5.5.10) справедливы.

Последующий анализ использует β в качестве бифуркационного параметра. Значение β, которое удовлетворяет (5.5.11), обозначим как β0, а малое отклонение β от β0 как v, т.е. v = β

β0. Собственные значения являются непрерывными функциями параметра β. Обозначим через Θ(v) собственное значение, равное iΘ0 в точке v = 0 (т.е. β = β0). Можно показать, что вполне разумно считать Θv(0) не равным нулю (см. Бенхабиб и Мийао, 1981).

Введем следующие действительные величины:

(5.5.12)

где g* = 1/[(1 — s){ Θ02 + х0 αпgq)2}]. Можно доказать следующую теорему.

Теорема 5.5.2. Бифуркационный цикл в обобщенной модели Тобина имеет период 2π/S(ε) и может быть приближенно описан формулами

Соседние файлы в папке Экономическая ТЕОРИЯ