Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Зарипова Концепции

.pdf
Скачиваний:
29
Добавлен:
02.05.2015
Размер:
5.23 Mб
Скачать

В отличие от этого макроэволюция связана с эволюционными преобразованиями за длительный исторический период времени, которые приводят к возникновению надвидовых форм организации живого.

Изменения, которые изучаются в рамках микроэволюции, доступны непосредственному наблюдению, тогда как макроэволюция происходит на протяжении длительного исторического периода времени и поэтому ее процесс может быть реконструирован лишь задним числом. В этих целях могут быть использованы методы сравнительно-морфологического, эмбриологического и палеонтологического исследования, позволяющие с определенной степенью правдоподобия восстановить возможную картину происходивших процессов эволюции. При этом следует учитывать, что макроэволюция, как и микроэволюция, происходит в конечном итоге под воздействием изменений в окружающей среде.

Несмотря на трудности, с которыми сталкиваются исследователи при изучении макроэволюции, к настоящему времени накоплен немалый обобщающий материал, формулируемый обычно в виде определенных закономерностей или правил макроэволюции крупных групп организмов.

Любая новая крупная группа организмов, выше уровня вида, как правило,

возникает потому, что приобретает в ходе эволюции качественно новые особенности в своей структуре и организации, которые дают ей коренное преимущество в борьбе за существование. Наибольший интерес в этом смысле привлекает идея Алексея Николаевича Северцова (1866—1936) об ароморфозе, согласно которой каждое крупное изменение в строении и функции организма можно рассматривать как новый фактор эволюции, вызывающий новые формы отбора. Он подчеркивал, например, что именно появление разумного поведения у высших животных явилось существенным усовершенствованием движущих сил эволюции.

Чем значительнее оказываются произошедшие изменения (ароморфоз) в группах организмов (таксонов) высшего порядка, тем настоятельнее адаптации к частным условиям среды таксонов низшего порядка.

Каждая группа организмов характеризуется определенным средним темпом эволюции. Чем быстрее совершается процесс приспособления группы к частным, конкретным условиям среды, тем скорее она достигает расцвета и соответственно гибели.

Уничтожение целых групп живых организмов в ходе эволюции обусловлено естественным отбором других групп, более приспособленных к изменившимся условиям окружающей среды. Исчезнувшие в процессе эволюции отдельные организмы, виды и группы впоследствии никогда не восстанавливаются в прежней форме.

• Эволюция не всегда идет от простого к сложному. Некоторые группы организмов, как, например, бактерии, сохранились с древнейших эпох только благодаря упрощению своей организации.

Решение многих проблем развития органического мира предполагает не противопоставление, а дополнение макроэволюционного подхода микроэволюционным.

131

Основные вехи эволюционного развития организмов

1. Появление простейших клеток - прокариотов.

Около 3,9 млрд лет назад появились одноклеточные организмы, которые, вероятно, выглядели, как современные бактерии, и архебактерии. Как древние, так и современные прокариотные клетки устроены относительно просто: они не имеют оформленного ядра и специализированных органелл, в их желеподобной цитоплазме располагаются макромолекулы ДНК – носители генетической информации, и рибосомы, на которых происходит синтез белка, а энергия производится на цитоплазматической мембране, окружающей клетку.

2. Появление клеток - эукариотов.

Почти 2 млрд лет понадобилось природе, чтобы появились сложноорганизованные эукариотные клетки, когда одноклеточные организмы усложнили свое строение за счет поглощения других прокариотных клеток. Одни из них – аэробные бактерии – превратились в митохондрии – энергетические станции кислородного дыхания. Другие – фотосинтетические бактерии – начали осуществлять фотосинтез внутри клетки-хозяина и стали хлоропластами в клетках водорослей и растений. Эукариотные клетки, имеющие эти органеллы и четко обособленное ядро, включающее генетический материал, составляют все современные сложные формы жизни – от плесневых грибов до человека.

3.Объединение клеток эукариотов с образованием многоклеточных организмов; функциональная дифференциация клеток в организмах.

4.Появление полового размножения и как следствие, появление высокоорганизованных форм жизни – растений и животных. Образование новых вариаций в смешанном генотипе, возникающем при половом размножении, проявилось в виде биоразнообразия новых форм жизни.

5.Появление организмов с твердыми скелетами.

Примерно 400 млн лет назад появились органические беспозвоночные формы с твердым скелетом (моллюсков, членистоногих).

Затем появляются земноводные, примитивные рептилии, спиралевидные моллюски, и наконец, динозавры.

6.Возникновение у высших животных развитой нервной системы.

7.Формирование мозга.

8.Формирование разума - высшей формы деятельности мозга.

9.Образование социальной общности людей.

Несколько слов о современной дискуссии по поводу теории эволюции. Английский биолог Ричард Докинз писал: «В наши дни теория эволюции вызывает примерно столько же сомнений, сколько теория о вращении Земли вокруг Солнца». Однако до сих пор число ниспровергателей этой теории не уменьшается. В частности утверждается, что очевидная целесообразность строения и поведения живых организмов не могла возникнуть вследствие естественного отбора. В книге «Слепой часовщик» Докинз пишет: «...Мы знаем о животных и растениях гораздо больше, чем Дарвин, но и по сей день мне не известен ни один пример, когда сложный орган не мог бы появиться в результате целого ряда последовательных и незначительных модификаций. Я не думаю, что такой пример когда-либо будет обнаружен. Если же это произойдет - и такой орган действительно будет органом высокой степени сложности, а ...понятие «незначительности» будет определено в точных научных терминах - то я перестану верить

132

в дарвинизм». О теории эволюции можно сказать, что биологические организмы созданы «слепым часовщиком», т.е. бессознательными дарвиновскими процессами мутации и отбора. В этом случае имеется своеобразная лестница со множеством ступенек, ведущая от первого организма до самого сложного: должна существовать непрерывная серия жизнеспособных промежуточных форм. Каждая последующая ступенька, ведущая к большей сложности, должна означать большую приспособляемость (в том, что касается потомства), в то же время как разрыв между ступеньками должен быть достаточно невелик, чтобы его можно было преодолеть посредством случайных мутаций.

Однако ряд современных ученых утверждает, что на молекулярном уровне уже открыто немало таких неупростимых сложных систем и что по мере развития науки их открывают все больше и больше (М.Бех. «Черный ящик Дарвина: биохимия бросает вызов эволюции»).

Концепция «неупростимой сложности» пока остается лишь концепцией, поскольку, сколько бы неупростимой не казалась сложная система, думается, что такая неупростимость представляется лишь на современном этапе развития науки. Но это лишь отражает сложность изучаемых систем: каждое ядро содержит закодированную базу данных, превосходящую по информационному содержанию Большую Советскую Энциклопедию. И эта информация относится к одной клетке, а не к состоящему из клеток организму. Сложность анализа биологических объектов состоит еще и в том, что по конечному результату (строению современной клетки) мы должны восстановить путь и процесс создания (эволюции) живой клетки. На это и направлены усилия ученых.

133

Глава 13. Генетика

Социальнообщественный уровень

Биологический

уровень

Уровни биологических структур

Биосфера ноосфера

Биогеоценоз (экосистема)

Биоценоз

Популяция, вид

Организмы (онтогенетический уровень)

Органы, системы органов

Ткани

Клетка

Молекулярно-генетический уровень.

Рис. 13.1. Иерархическая «матрѐшка».

Молекулярно-генетический уровень

Г. Мендель. 1869 г. Открыл закон о наследовании признаков, то есть, разработал механизм наследования, не зависящий от условий, а зависящий от возможных комбинаций по теории вероятностей. Мендель опубликовал свою работу в 150 экземплярах, и поэтому Дарвин просто не получил возможности ознакомиться с ней. В 1902 году де Фриз переоткрыл законы Менделя. В 1901 году Иогансен назвал эти признаки генами.

Гипотеза: Новые виды получились резким переходом, подходом к точке бифуркации системы.

Мендель и де Фриз являются основателями формальной генетики. Главный тезис – работает только теория вероятностей в распределении генов, а не среда.

Генотип – совокупность наследственных факторов, полученных от родителей в момент оплодотворения.

Фенотипическая мутация – изменчивость, связанная с влиянием среды. Фенотип – совокупность признаков и свойств организма, которые возникают при взаимодействие с факторами среды.

Модификационные мутации – мутации, происходящие из-за неоднородности условий против организма. Решающей для эволюции вида является генотипическая мутация.

Молекулярно-генетический уровень изучает физико-химическая биология, XX

век. Это внедрение физико-химических методов анализа в биологию, следствием является интеграция естественных наук. Объект изучения – молекулы, структура живой материи и их функции.

Методы изучения:

Фрагментация организма.

1.Методы электронной электроскопии.

134

2.Методы рентгенно-структурного анализа. Рентгенно-структурный анализ – применение жѐсткого рентгеновского излучения. При его помощи было установлено строение молекул ДНК и РНК.

Методы прижизненного анализа, то есть, анализа без нарушения структуры.

А.Метод изотопного исследования (метод «меченых» атомов). В организм пускают радиоактивные изотопы и отслеживают их движение – они скапливаются в злокачественных опухолях. Довольно быстро выводятся из организма естественным образом.

Б. Оптическое зондирование (применение оптического волокна). В.УЗИ (Ультразвуковое исследование).

Г.Томографы – послойное изучение.

Главным достижением физико-химической биологии является расшифровка генетического кода, механизма работы ферментов, механизмов высшей нервной деятельности (ВНД).

На молекулярном уровне осуществляется самый главный жизненный процесс – хранение и передача генетической информации. Он осуществляется с помощью ДНК, которая находится в эукариотных (ядерных) клетках. Хромосома – гигантская полимерная молекула. В каждой из них не менее 10000 молекул ДНК. В молекуле ДНК не менее 20000 звеньев (нуклеотидов).

У человека в клетке 46 хромосом, в каждой из которых не менее 10000 молекул ДНК, в каждой из которых около 20000 звеньев. (≈9,2·109). Общая длина ДНК во всех клетках человека почти в 1000 раз больше расстояния от Земли до Солнца.

Все ДНК человека составляют геном. ДНК была открыта в 1869 году Мищером. Он выделил еѐ из клеток и назвал нуклеиновой кислотой. Щепотьев в 1914 году высказал предположение о причастности ДНК к передаче наследственной информации. Нуклеиновые кислоты одинаковы для представителей флоры и фауны.

Генетическая информацияпрограмма свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Существуют три способа передачи генетической информации.

1.Митоз

2.Мейоз

3.Биосинтез

1.Митоз обеспечивает эмбриональное развития, рост организма, восстановление органов, тканей после повреждения. Митоз – бесполое размножение. Из одной родительской клетки получаются две совершенно одинаковых дочерних клетки. Если при копировании нарушается какой-либо участок, то ДНК, как сложная самоорганизующаяся система сама исправляет ошибку. За миллионы лет ДНК выработала ферменты, отщепляющие неправильные участки и достраивающие недостающее. Это и есть консервативность наследственности. Меньше всего нарушаются гены как раз при мейозе.

2.Мейоз. Из двух родительских клеток – гамет образуется одна – зигота, поэтому количество хромосом всегда чѐтное. Сома – тело. Между соматическими и

135

половыми клетками различия: соматические способны к делению, половые не делятся.

Значение мейоза:

Благодаря мейозу в клетках организма поддерживается постоянное число хромосом вне зависимости от числа поколений, то есть, поддерживается постоянство вида.

Мейоз способствует пересортировке генов. Кроссинговер – обмен частями хромосом. В процессе мейоза происходят мутации, то есть, изменения генотипа.

ДНК и-РНК Рибосома (т-РНК) Белок

В отличие от ДНК, РНК распадается довольно быстро (от нескольких минут до нескольких часов. Синтез белков можно ускорить анаболиками, гормонами. Рост белков замедляется при помощи антибиотиков. В самом простом случае ген представлен двумя формами-аллелями. Трѐхаллельный ген – например, определяющий группу крови человека.

ABO

1.OO

2.AO, AA

3.BO, BB

4.AB

Как известно, генетическая (наследственная) информация записана в цепи молекулы ДНК в виде последовательности более простых молекул - нуклеотидных остатков, содержащих одно из четырех оснований: аденин (А), гуанин (G) - пуриновые основания, цитозин (С) и тимин (Т) - пиримидиновые основания.

Структура молекулы ДНК была изучена в 1953 г. Дж.Уотсоном и Ф.Криком. Они установили, что молекула ДНК состоит из двух цепей, образующих двойную спираль, которая закручена вправо (по часовой стрелке). К полимерному остову спиральной цепи ДНК (состоит из чередующихся остатков фосфата и сахара дезоксирибозы) "прикреплены" нуклеотидные остатки. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение). Образование водородных связей между комплементарными парами оснований обусловлено их пространственным соответствием. Пиримидиновое основание комплементарно пуриновому основанию. Водородные связи между другими парами оснований не позволяют им разместиться в структуре двойной спирали. Цепи ДНК -

комплементарны, т.е. имеется взаимное соответствие между их нуклеотидами, которые образуют уотсон-криковские пары Г-Ц и А-Т. Сами же цепи в двойной спирали антипараллельны.

136

Рис.13.2. Схематический вид молекулы ДНК

137

В основе самовоспроизводства лежит способность молекулы ДНК к удвоению, которое называется репликацией ДНК. Репликация ДНК основана на принципе комплементарности, что хорошо иллюстрируется схемой, приведенной на рис:

Рис.13. 3. Удвоение молекулы ДНК.

Вживой клетке удвоение происходит потому, что две спиральные цепи расходятся,

апотом каждая цепь служит матрицей, на которой с помощью особых ферментов собирается подобная ей новая спиральная цепь ДНК. В результате вместо одной ДНК образуются две, неотличимые по строению от родительской молекулы ДНК,

Рис.13.4 . Репликация ДНК.

каждая из которых имеет одну нить, полученную из материнской молекулы, и одну нить, синтезированную по комплементарному принципу.

Обсудим, как происходит передача информации в клетке. Напомним, что участок

молекулы ДНК, служащий матрицей для синтеза одного белка, называется геном.

138

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет двумя путями: - по каналу прямой связи (ДНК - РНК - белок); и по каналу обратной связи (среда - белок - ДНК). Синтез белка происходит в рибосомах клетки. К ним из ядра поступает информационная (или матричная) РНК ( иРНК), которая может проникать через порог ядерной мембраны.

Что же такое иРНК?

Это одноцепочечная молекула, комплементарная части одной нити ДНК. Эта часть соответствует одному или группе рядом лежащих генов;- молекула, образованная под действием специального фермента - РНК-полимеразы, которая, продвигаясь по нити ДНК, ведет синтез иРНК; данный процесс называется транскрипцией.

Как определяется длина части ДНК, с которой снимается копия в виде иРНК?

В начале этой части и в ее конце находятся специфические последовательности нуклеотидов, которые может "узнавать" РНК-полимераза и таким образом "определять" участок считывания.

Весь процесс репликации, осуществляемый разными белками-ферментами, очень согласован, поэтому часто употребляют термин - работа "репликационной машины". Репликация идет с очень высокой точностью. ДНК млекопитающего состоит из 3 млрд. пар нуклеотидов, а в процессе воспроизведения допускается не более 3 ошибок. При этом надо помнить, что синтез идет с большой скоростью - от 50 до 500 нуклеотидов/сек, поэтому в клетке существуют специальные корректирующие механизмы: ДНКполимеразы дважды проверяют соответствие нуклеотидов исходной матрице. Итак, в процессе синтеза белка иРНК, пройдя через ядерную мембрану, поступает в цитоплазму к рибосомам, где осуществляется:

а) расшифровка генетической информации, б) синтез из аминокислот биополимерной макромолекулы белка.

Аминокислоты доставляются к рибосомам с помощью транспортных РНК (тРНК). В клетке имеется столько аминокислот, сколько типов кодонов, шифрующих аминокислоты.

Генетический код

Генетическая информация заключена в последовательности нуклеотидов. Это значит, что строго определенная последовательность нуклеотидов соответствует определенной аминокислоте, а определенный порядок расположения и количество аминокислот соответствует, в свою очередь, определенной структуре белка.

Таким образом, иРНК несет генетическую информацию в виде генетического кода, который с помощью четырех символов (четыре нуклеотида А, Г, Ц, У) задает любую из 20 аминокислот.

Свойства генетического кода:

а) Код триплетен

Каждая из 20 аминокислот зашифрована последовательностью 3-х нуклеотидов. Эта последовательность называется кодоном.

б) Код вырожден.

139

Каждая аминокислота кодируется более, чем одним кодоном (от 2 до 6 кодонов на одну аминокислоту).

в) Код однозначен.

Каждый кодон соответствует только одной аминокислоте.

г) Генетический код универсален,

т.е. един для всех живых организмов планеты.

Таким образом, ген представляет собой чередование "слов из трех букв" - кодонов, образованных из четырехбуквенного алфавита.

Необходимо особо подчеркнуть универсальность генетического кода - с его помощью закодирована вся информация и о простейшем одноклеточном организме, и о человеке. Но в первом случае можно было обойтись и более простым кодом, а во-втором - лучше было бы использовать более совершенный (сложный) код. Поэтому единство генетического кода служит очень весомым аргументом в пользу единого эволюционного пути всего живого на Земле.

Программа "Геном человека"

В 1998 году начался проект «Геном человека», в котором участвуют 20 стран. США вложили в этот проект 253 миллиона долларов.

Международная программа "Геном человека" посвящена решению проблемы картирования генов человека. Число генов в составе ДНК человека - около 50-60 тысяч, что составляет только 3% общей длины ДНК; роль остальных 97% пока неясна. В каждой клетке человека содержится 46 молекул ДНК, которые распределены в 23 парах хромосом. Хромосомы - это структуры, по которым распределена полная молекула ДНК. Суммарная длина всех 46 молекул ДНК в одной клетке человека равна около 2 метров. Полная же длина всех молекул ДНК в теле взрослого человека, состоящего из 5х1013 клеток, составляет 1011 км, что в тысячу раз превышает расстояние от Солнца до Земли. К настоящему времени практически полностью расшифрована полная последовательность ДНК.

Главная задача исследований - изучить вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить генетические различия между ними. Анализ таких различий позволит построить индивидуальные генные портреты людей, что даст возможность лучше лечить болезни. Кроме того, такой анализ позволит выявить различия между популяциями и выявить географические районы повышенного риска поражения генома людей. Таким образом, благодаря геномным исследованиям стало ясно, что в ходе эволюции жизни на Земле сначала выделились представители архей, имеющих клетки без ядер, а позже - эукариот (состоящих из клеток с ядрами), включая человека. Геномными исследованиями было выявлено также совпадение нуклеотидных последовательностей у неродственных видов. Это дает основания предположить, что в процессе эволюции происходил перенос генов от одного вида к другому. Например, оказалось, что геномы человека и мыши весьма близки - их нуклеотидные последовательности совпадают более чем на 90%. Определены гены-возбудители сифилиса, туберкулѐза и 20 других бациллоносителей, которые передаются при мейозе. Расшифровка генома человека уже привел к установлению последовательности генотипа ДНК. Обнаружены гены, отвечающие за сахарный диабет, злокачественные опухоли, агрессивность, наркоманию. Разработана программа ранней диагностики патологий внутриутробного развития. Нашли

140