Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Зарипова Концепции

.pdf
Скачиваний:
29
Добавлен:
02.05.2015
Размер:
5.23 Mб
Скачать

случайности выжили в ходе этой войны, ухитрились дать начало истинным симбионтам

— клеткам-гибридам, внутри которых теперь уже мирно сосуществовали бок о бок уставшие от многомиллионолетних склок бывшие враги.

Симбиогенез, таким образом, на первых своих этапах больше походил на вторжение в любой организм чужеродных патогенов. Он и был таким вторжением, только со сверхблагополучным исходом.

Некоторые биологи убеждены, что в клетках нашего организма дремлют древние вирусы, укрывшиеся там от бурь и перипетий предшествующей борьбы с этими же клетками. Может быть, генетический материал таких вирусов стал частью наших ДНК. Может быть, поразительная способность так называемых ретровирусов (вроде вируса СПИДа) встраивать свои гены в наши ДНК — это остаток некогда существовавшего и нарушенного симбиоза.

«Негативный симбиоз» с патогенами знает и не такие чудеса. С начала девяностых годов, когда стала развиваться техника микровидеосъемки процессов взаимодействия клеток с вторгшимися в них микробами и бактериями, многие детали этих процессов стали воочию зримыми, и эти детали вынудили специалистов прийти к выводу, что «для танго требуются двое», или, как сформулировала это на профессиональном языке доктор Джулия Теорио из Института биомедицинских исследований в Кембридже, «практически во всех случаях такого инфекционного вторжения ущерб, причиняемый им организму, является в определенной мере также и «виной» самого организма: ущерб вызывает не только сам патоген, но и спровоцированная им ошибочная реакция клетки на его вторжение».

Сегодня можно различить несколько уровней такой «невольной», если угодно — симбиотической, «помощи», которую клетка оказывает агрессору. На самом простом уровне это демонстрируют, например, стафилококки. Некоторые их виды выделяются под полезные для клетки вещества, и она «распахивает» перед ними свои рецепторы. В более изощренных случаях такого «негативного симбиоза» на рецепторы «усаживается» сам патоген — так поступает холерный вибрион, используя эту удобную позицию, чтобы выделить в клетку свои токсины. В еще более коварных случаях «сотрудничества» происходят подлинные чудеса симбиоза. Простейшая кишечная палочка, эшерихия коли, вызывающая уже упомянутую диарею (иногда даже смертельную), демонстрирует одно из таких чудес. Сначала она обманом понуждает клетку кишечника сбросить наружные волосинки, чтобы бактерии было легче усесться на ее поверхность.

А после этого она провоцирует ту же несчастную создать для нее выпячивание в мембране, своего рода «пьедестал», находясь на котором бактерия оказывается недоступной для клеточных средств защиты.

Однако наивысшую степень интимной близости демонстрируют, конечно, те патогены, которые проникают внутрь клетки. Оказывается, это умеет не только пресловутый вирус СПИДа. Такой способностью наделены очень многие обычные бактерии-патогены. Они реализуют ее посредством посылки особого химического сигнала о своем присутствии, который играет роль своеобразного троянского коня — в ответ на этот сигнал клетка выпячивает свою мембрану в сторону приблизившейся бактерии, обволакивает ее и втягивает в себя. Оказавшись внутри клетки, бактерия тотчас секретирует свои ферменты, которые продырявливают клеточную мембрану и позволяют бактерии войти в цитоплазму, где она зачастую становится постоянным «гостем», образовав вокруг себя защитную вакуоль. Во многих случаях такие бактерии используют

181

эту вакуоль как средство перехода к новому этапу инфекции. Они начинают напрямую переходить из клетки в клетку, минуя таким образом защитные системы организма.

Может быть, те далекие начальные этапы древнего симбиогенеза, которые привели в конечном счете к возникновению первых эукариотов, тоже выглядели изнурительными битвами, в которых противники-симбионты прибегали к таким изощренным военным хитростям, бесконечно меняя свою стратегию и пользуясь невольными услугами друг друга. Кто знает… Можно лишь сказать, что невидимые чудеса симбиоза, как плодотворного, так и негативного, поистине окружают нас со всех сторон и составляют одну из непременных основ жизни — а возможно, какую-то универсальную суть. Как сказал тот же Льюис Томас, с рассказа которого о миксотрихе я начал эту статью, «быть может, поняв эту суть, эту подстилающую жизнь тенденцию к объединению и кооперации клеток, которая в конечном счете породила розы, дельфинов и нас самих, мы поняли бы, что та же самая тенденция побуждает организмы объединяться в коллективы, коллективы организмов — в экологические системы, а все эти системы — в единую биосферу. И тогда все наши защитные иммунные реакции и рефлекторные ответы на агрессию «чужого» оказались бы лишь средствами регулировки и модуляции этого великого и всеобщего процесса симбиоза, предназначенными не для полного его прекращения, а только для того, чтобы он не вышел из-под контроля».

Развивая эту точку зрения, мы рано или поздно придем к той величественной картине биосферы, которая некогда воодушевляла Вернадского, а сегодня кульминировала в так называемой гипотезе Геи, развиваемой Джеймсом Лавлоком, который утверждает, что симбиоз (понятый в самом широком смысле — как самоорганизация на основе кооперации и взаимодействия) существует не только на уровне телесных клеток и бактерий, но и на уровне таких сложных систем, как атмосфера, почва и даже наша Земля в целом. Гипотеза Геи говорит, что даже такие планетарные параметры, как, например, температура и химический состав атмосферы, являются результатом совместной деятельности всех живых организмов планеты. Лавлок, в сущности, утверждает, что вся Земля представляет собой единый огромный организм. Точнее было бы называть ее единой экологической системой, которая состоит из огромного числа симбиотически взаимодействующих меньших экосистем и благодаря этому способна в большой мере сама «залечивать» свои раны и регулировать свои отклонения от равновесия.

Древние греки называли Геей богиню Земли. Гипотеза Геи, будь она верна, была бы высшим, предельным чудом симбиоза — разве что вслед за американским астрономом Лео Смолиным признать «живой» всю Вселенную.

182

Глава 18. Концепции самоорганизации и моделирования процессов в сложных системах

Возникновение упорядоченности. Понятия аттрактора и динамического хаоса.

Термин «турбулентность» (от лат. turbulentus — беспорядочный) ввел еще Кельвин. Точного описания его нет до сих пор, как нет простой математической модели турбулентных движений, которые оказались связанными с нелинейностью. Нерегулярное поведение, типичное для турбулентности, - результат бесконечного каскада бифуркаций. Говорят, что система из «царства необходимости» переходит в «царство свободы». Но и в «царстве свободы» периодически возникают области, где движение вновь приобретает порядок.

При существенном усложнении структуры одновременно увеличивается его внутренняя упорядоченность. Это уже не тот беспорядок, что был в равновесном состоянии.

Проблема турбулентности важна не только в связи с инженерными приложениями. Большая часть среды Вселенной находится в турбулентном движении, и с неустойчивостями сталкиваются в физике атмосферы и астрофизике, в океанологии и физике планет. Вообще отношение к хаосу было разнообразным. У древних греков хаос считался первичным состоянием материи, но, как отметил Б. Пастернак, «напрасно в годы хаоса искать конца благого».

Хаотические эффекты, нарушавшие стройную картину классической физики с первых дней становления теории, в XVII в. воспринимались как досадные недоразумения. Кеплер отмечал нерегулярности в движении Луны вокруг Земли. Ньютон, по словам своего издателя Р. Котеса, принадлежал к тем исследователям, которые силы природы и простейшие законы их действия «выводят аналитически из каких-либо избранных явлений и затем синтетически получают законы остальных явлений». Но закон — однозначное и точное соответствие между рассматриваемыми явлениями, он должен исключать неопределенность и хаотичность. Отсутствие однозначности в науке того времени рассматривалось как свидетельство слабости и ненаучного подхода к явлениям. Постепенно из науки изгонялось все, что нельзя формализовать, чему нельзя придать однозначный характер. Так пришли к механической картине мира и «лапласовскому детерминизму».

Изучение свойств газов нарушило универсальный характер механических законов. Поскольку проследить за движением каждой молекулы газа невозможно, пришлось признать ограниченность своих возможностей и согласиться, что закономерности, наблюдаемые в поведении массы газа как целого, есть результат хаотического движения составляющих его молекул. И тогда Клаузиус ввел «принцип элементарного беспорядка», который понимался как независимость координат и скоростей отдельных частиц друг от друга при равновесии. Эту идею Больцман и положил в основу своей молекулярно-кинетической теории. Максвелл указал на принципиальное отличие механики отдельной частицы от механики большой совокупности частиц, подчеркнув, что большие системы характеризуются параметрами (давление, температура и др.), не применимыми к отдельной частице. Так родилась новая наука — статистическая механика. Идея элементарного беспорядка, или хаоса, устранила противоречие между механикой и термодинамикой. На основе статистического подхода удалось совместить обратимость отдельных механических явлений (движений отдельных молекул) и необратимый характер движения их совокупности (рост энтропии в замкнутой системе).

183

Но идеи хаоса оказались более фундаментальны. При изучении теплового излучения возникли противоречия: электромагнитная теория Фарадея — Максвелла описывала обратимые процессы, но процессы обмена световой энергией между телами, находящимися при разных температурах, ведут к выравниванию температур, т. е. должны рассматриваться как необратимые. Планк ввел гипотезу «естественного излучения», соответствующую гипотезе молекулярного беспорядка. Ее смысл такой: отдельные электромагнитные волны, составляющие тепловое излучение, ведут себя независимо и «являются полностью некогерентными». Эта гипотеза привела к представлению о квантовом характере излучения, которое обосновывалось с помощью теории вероятностей. Хаотичность излучения оказалась связанной с его дискретностью. Квантовый подход позволил Планку и Эйнштейну объяснить ряд законов и явлений (закон Стефана — Больцмана, закон смещения Вина, законы фотоэффекта и др.), которые не находили объяснения в классической электродинамике.

Отступления Луны от траекторий, рассчитанных по законам классической механики, американский астроном Дж.Хилл в конце XIX в. объяснил притяжением Солнца. Французский математик А. Пуанкаре предположил, что вблизи каждого тела есть малозаметные факторы и явления, вызывающие нерегулярности. Поведение даже простой системы существенно зависит от начальных условий, так что не все можно предсказать. Решая задачу трех тел, Пуанкаре обнаружил существование фазовых траекторий, которые вели себя запутанно и сложно, образуя «нечто вроде решетки, ткани, сети с бесконечно тесными петлями; ни одна из кривых никогда не должна пересечь самое себя, но она должна навиваться на самое себя очень сложным образом, чтобы пересечь много, бесконечно много раз петли сети». В начале XX в. на эту работу особого внимания не обратили.

Примерно в это же время Планк начал изучать другую хаотичность классической науки и нашел выход во введении кванта, который должен был примирить прежние и новые представления, но на самом деле сокрушил классическую физику. В строении атомов долгое время видели аналогию со строением Солнечной системы. Интерес к невозможности однозначных предсказаний возник в связи с появлением принципиально иных статистических законов движения микрообъектов. Соотношения неопределенности Гейзенберга показывают, что может реализовываться лишь некоторая конечная область состояний , внутри которой лежат начальные координаты q0 и импульсы р0. При этом внутри выделенной области значения координат и импульсов распределены по вероятностному закону, и по мере эволюции системы увеличивается и область ее состояний . На небольших временных интервалах неопределенность состояния будет нарастать медленно и движение системы будет устойчивым. Для таких систем классическая механика плодотворна.

Наконец, в 60-е годы ХХ столетия было установлено, что на систему могут действовать и некоторые случайные силы, которые даже при самой малой величине за длительное время действия приведут к непредсказуемым результатам. Такие системы чувствительны не только к начальным значениям параметров, но и к изменениям положений и скоростей в разных точках траектории. Получается парадокс: система подчиняется однозначным динамическим законам и совершает непредсказуемые движения. Решения динамической задачи реализуются, если они устойчивы. Например, нельзя видеть сколь угодно долго стоящий на острие карандаш или монету, стоящую на ребре. Но тогда задача из динамической переходит в статистическую, т. е. следует задать начальные условия статистическим

184

распределением и следить за его эволюцией. Эти случайные явления получили название динамического хаоса.

В 1963 г. метеоролог Э.Лоренц описал новый механизм потери устойчивости, наблюдаемый в процессе конвекции при моделировании процессов возникновения турбулентности.

Эдвард Лоренц с детства увлекался погодой и математикой. Во время Второй мировой войны стал метеорологом ВВС США, после продолжил изучать теоретические основы метеорологии в Массачусетском технологическом институте, а также стал заниматься довольно экзотическим по тем временам делом – пытаться научиться прогнозировать погоду с помощью компьютерных моделей.

В его распоряжении находилась вычислительная машина Royal McBee. В 1960 году Лоренц создал упрощенную модель погоды. Модель представляла собой набор чисел, описывавший значение нескольких переменных (температуры, атмосферного давления, скорости ветра) в данный момент времени. Лоренц выбрал двенадцать уравнений, описывавших связь между этими переменными. Значение переменных в следующий момент времени зависело от их значения в предыдущий момент и рассчитывалось по этим уравнениям. Таким образом, модель была полностью детерминирована. Коллеги Лоренца от модели пришли в восторг. Машине скармливались несколько чисел, она начинала выдавать ряды чисел (впоследствии Лоренц научил ее рисовать несложные графики), описывающие погоду в некотором воображаемом мире. Числа не повторялись – они порой почти повторялись, система как будто воспроизводила старое свое состояние, но не полностью, циклов не возникало. Словом, искусственная погода была плохо предсказуема, причем характер этой непредсказуемости (апериодичность) был примерно такой же, какой и у погоды за окном. Студенты и преподаватели заключали пари, пытаясь угадать, каким будет состояние модели в следующий момент. Зимой 1961 года Лоренц решил подробнее изучить уже построенный машиной график изменения одной из переменных. В качестве начальных данных он ввел значения переменных из середины графика и вышел отдохнуть. Машина должна была бы точно воспроизвести вторую половину графика и продолжить строить его дальше. Однако, вернувшись, Лоренц обнаружил совершенно другой график. Если в начале он еще более-менее повторял первый, то к концу не имел с ним ничего общего.

Рис.18.1. Два графика погоды, берущих начало из одной точки.

Получалось, что модель, из которой полностью устранена случайность, при одних и тех же начальных значениях выдает совершенно разные результаты. Разгадка нашлась довольно быстро: в памяти машины значения переменных хранились с точностью до шести знаков после запятой (...,506217), а на распечатку выдавалось только три (...,506). Лоренц, разумеется, ввел округленные значения, резонно предположив, что такой точности вполне достаточно. Оказалось, что нет. "...<Провалились маленькие костяшки домино... большие костяшки... огромные костяшки, соединенные цепью неисчислимых лет, составляющих Время", – написал в 1952 году в знаменитом рассказе "И грянул гром" Рэй Брэдбери.

185

Примерно это же произошло в модели Лоренца. Система оказалась исключительно чувствительной к малейшим воздействиям на нее. Это наблюдение, вкупе со многими другими открытиями, привело к подробному изучению детерминированного хаоса –

иррегулярного и непредсказуемого поведения детерминистских нелинейных динамических систем (определение Родерика Дженсена из Йельского университета), явно беспорядочного,

повторяющегося поведения в простой детерминистской системе, похожей на работающие часы (определение Брюса Стюарта из Брукхевенской национальной лаборатории США). Откуда в детерминированной системе хаос и непредсказуемость? От сильной чувствительности к начальным условиям. Малейшее воздействие, от которого невозможно избавиться – округление переменной (если это теоретическая модель), ошибка измерения (если это исследование реальной системы) – и система ведет себя совершенно по-другому. Лоренц приводил наглядный пример: если погода действительно относится к классу настолько чувствительных систем (разумеется, не все системы такие), то взмах крыльев чайки может вызвать заметные изменения погоды. Впоследствии чайка была заменена бабочкой, а в 1972 году появилась работа "Предсказуемость: может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?". Так родился знаменитый термин "эффект бабочки", отсылавший и к рассказу Брэдбери и, удивительным образом, к следующему открытию Лоренца – странному аттрактору, названному в его честь. Он обнаружил в фазовом пространстве трех измерений (координаты — скорость и амплитуды двух температурных мод) область, которая как бы притягивала к себе траектории из окрестных областей. Попадая в область, названную им странным аттрактором (лат. attractio — притяжение), близкие траектории расходились и образовывали сложную и запутанную структуру. Переход системы на такой режим означает, что в ней наблюдаются сложные непериодические колебания, очень чувствительные даже к малому изменению начальных условий. Эта чувствительность к малому воздействию получила красочное название — «эффект бабочки». Такие объекты – странные аттракторы – сыграли большую роль во фрактальной геометрии и теории хаоса.

Рис. 18.2. Аттрактор Лоренца.

Порядок и хаос в больших системах. Понятие фрактала

Наблюдения Лоренца заставляют пережить два шока. Первый – оказывается, демон Лапласа может быть бессильным даже перед не очень сложной детерминированной системой. Там, где все, казалось бы, предопределено, неожиданно возникает хаос.

Второй шок – в этом хаосе, оказывается, спрятан порядок. Неожиданный, странный, плохо понятный, представляющий собой "тонкую структуру, таящуюся в беспорядочном потоке

186

информации" (Дж. Глейк), но тем более интересный. Аттрактор Лоренца не решает проблемы предсказания, но уже само его существование достойно изучения.

Поисками подобных проявлений порядка в хаосе и занимается сравнительно молодая наука – теория хаоса. Она возникла не мгновенно и не имеет одного создателя. Ее основы были заложены в работах Пуанкаре, Колмогорова, Арнольда, Ляпунова, Ландау, Смэйла, Мандельброта, Фейгенбаума и десятков других талантливых ученых, либо увидевших то, что до них никто не видел, либо сумевших описать то, что увидели другие. Одним же из ключевых моментов (далеко не сразу, кстати, оцененным по достоинству) в ее возникновении считается день, когда Эдвард Нортон Лоренц, любитель погоды и упорный искатель странного, ввел в свою модель значения переменных, округленные до трех знаков после запятой.

Сложные системы состоят не только из большого числа элементов, но и большого числа разнообразных связей между ними. Для таких систем все труднее, а то и невозможно, вывести механизмы функционирования - у такой системы появляются свойства, которых не было у ее частей или элементов. Эволюцию динамических систем во времени оказалось удобным анализировать с помощью фазового пространства — абстрактного пространства с числом измерений, равным числу переменных, характеризующих состояние системы.

Хаотические движения в фазовом пространстве порождают случайность, связанную с появлением сложных траекторий в результате растяжения и складывания в фазовом пространстве. Важнейшее свойство странных аттракторов — фрактальность. Фракталы — это объекты, проявляющие по мере увеличения все большее число деталей. Их начали активно исследовать с появлением мощных ЭВМ. Объекты элементарной геометрии — прямые и окружности — природе не свойственны, структура вещества чаще принимает замысловато ветвящиеся формы, напоминающие обтрепанные края ткани. Как написал Бенуа Мандельброт, «геометрия природы фрактальна». Примеров подобных структур много: это и коллоиды, и отложения металла при электролизе, и клеточные популяции, и форма облаков. Подобие объектов природы может выявляться по разным признакам, и математическое понятие фрактала выделяет объекты со структурами разных масштабов. Тем самым в этом понятии отражен иерархический принцип организации мира, и в некотором смысле другая идеализация его. Термин «фрактал» был введен Б. Мандельбротом в 1977 г. в книге «Форма, случайность и размерность». Мандельброт писал: «Я придумал слово «фрактал», взяв за основу латинское прилагательное «fractus», означающее нерегулярный, фрагментарный». Он считал, что введение фрактальных множеств позволяет объяснить и предсказать многие явления в самых различных областях. Пример — медленное впрыскивание подкрашенной краской воды в тонкий прозрачный слой вязкой жидкости между двумя близко расположенными пластмассовыми пластинками. Вода распространяется от места впрыскивания, образуя ветвящиеся радиальные узоры. При пробое диэлектрика тоже возникают разветвленные структуры разряда, связанные с фрактальными размерностями. Были воспроизведены и наиболее известные фрактальные формы, самовоспроизводящиеся структуры снежинок - их шестиугольные формы возникают из-за диффузии на треугольных решетках.

Ниже представлены графические изображения различных фракталов, полученные через сеть Internet.

187

а) б) в) Рис. 18.3. Примеры графического представления фракталов.

а) фрактал Серпинского; б) кривая Коха; в) Множество Мандельброта.

Представление о теории катастроф

Пороговый характер самоорганизующихся процессов термодинамика связала с неустойчивостью: новая структура есть результат неустойчивости и возникает из флуктуаций. В «допороговом» состоянии флуктуации затухают и макроскопически не проявляются (например, в конвекционном потоке при малых температурах они рассасываются за счет сил вязкого трения). В состоянии выше порога флуктуации уже не рассасываются, а усиливаются, достигают макроскопических значений и выводят систему на устойчивый режим, создают новую структуру, возникающую после неустойчивости. Математически это связано с нелинейностью уравнений, описывающих систему вдали от равновесия. Если линейное уравнение имеет одно стационарное решение, то нелинейное — несколько. Система может принимать любое из этих состояний, и переход из одного в другое стационарное состояние соответствует преодолению порога.

Катастрофой называют скачкообразное изменение, которое может возникнуть в ответ на плавное изменение внешних условий. Для систем это означает потерю устойчивости. Область математики, занимающаяся катастрофами, названа теорией катастроф. Она является в некотором роде обобщением исследования функций на экстремум на случай многих переменных и опирается на теорию особенностей гладких отображений. Отображение поверхности на плоскость есть сопоставление каждой точки поверхности с точкой плоскости. Исследования особенностей таких отображений начал в 1955 г. Г. Уитни, ознакомившись с работами Пуанкаре и Ляпунова, а также советских ученых — Андронова, развившего теорию бифуркаций, и Понтрягина, который ввел понятие грубости — структурной устойчивости системы. Важность исследований в направлении, названном К.Зиманом теорией катастроф, оценил французский математик Р. Тома. Он сформировал эту теорию и ее приложения. Сразу появились работы по применению теории катастроф к разным объектам (исследования биения сердца, физическая и геометрическая оптика, лингвистика, геология, эмбриология, гидродинамика, моделирование деятельности мозга и психических расстройств, восстаний в тюрьмах, поведения биржевых игроков и т.д.). Первые публикации по теории катастроф появились в 1970 г. Теория катастроф позволяет свести огромное многообразие сложных ситуаций к небольшому числу точно изученных схем. Для одной-двух переменных и не более пяти управляющих параметров существует семь типов элементарных катастроф. Все семь канонических катастроф имеют в каустиках свои образы. Теория катастроф, широко используемая в метеорологии, аэро- и гидродинамике, оптике, теории кооперативных явлений, квантовой динамике и др., подводит стандартную и эффективную базу под описание качественных изменений в нелинейных уравнениях, описывающих далекие от равновесия системы.

188

Понятие бифуркации

Если теория катастроф описывает области устойчивости структур, то развитие этой статической картины во времени дается теорией бифуркаций. Нелинейная система имеет целый спектр решений, и нужно определить, какие из них «ответвляются» от известного решения при изменении параметра. Изменения управляющих параметров способны вызывать катастрофические (большие) скачки переменных состояний, и эти переходы осуществляются почти мгновенно (скачком). Момент перехода определяется свойствами системы и уровнем флуктуаций в ней. Выделяют два принципа: принцип максимального промедления, определяемый существованием устойчивого уровня, и принцип Максвелла, определяющий состояние системы глобальным минимумом. Каждому из принципов соответствует множество точек в пространстве управляющих параметров, в котором происходит переход из одного локального минимума в другой. Последовательность бифуркаций, возникающая с ростом неравновесности в системе, меняется, и процесс пойдет по разным сценариям. Итак, в точке бифуркации поведение системы «разветвляется», становится неоднозначным. При достижении третьей бифуркации наступает состояние динамического хаоса, который скрывает внутреннюю упорядоченность. Проблема выяснения условий возникновения порядка из хаоса, по словам известного физикатеоретика Уилера, — задача номер один современной науки.

Синергетика — новый научный метод.

Во второй половине двадцатого столетия в естествознании произошли фундаментальные изменения, породившие теорию самоорганизации или синергетику. Она родилась внезапно, на стыке нескольких наук.

В пятидесятых годах Б.П. Белоусов сформулировал теорию саморазвития каталитических систем. Открытие и изучение автоколебаний и автоволн едва ли самая блестящая страница Российской науки в послевоенные годы. Выход таких реакций меняется с течением времени; такие реакции были обнаружены и в живой природе. Изучение автоколебательных реакций составляет часть нестационарной кинетики. Термин «автоволны» был введен одним из создателей нелинейной оптики академиком Р. В. Хохловым.

Автоволны — это самоподдерживающиеся волны, которые распространяются в активных средах или средах, поддерживаемых энергетически. За счет внутренних источников среды автоволны способны поддерживать свои характеристики, поэтому автоволны были открыты при химических реакциях, реакциях горения и т.д.

Аналогию процессов, происходящих в сложных нелинейных системах, с фазовыми переходами отметили несколько ученых, работавших в квантовой электронике: немецкие ученые Грэхем и Хакен и итальянские - де Джиржио и Скулли в 1970 г. Коллективные процессы Г. Хакен выделил во всех самоорганизующихся системах: коллективно организуются молекулы в узлах кристаллической решетки, элементарные магнитные моменты (спины) в ферромагнетике, вихри внутри жидкости, порождая видимую на макроскопическом уровне структуру. Возбуждаясь в рабочем веществе лазера, атомы самосогласованно и коллективно испускают когерентное излучение. Итак, кооперативность - общая черта процессов самоорганизации. Кроме того, инверсная населенность, как и неравновесное состояние в жидкостях, должна поддерживаться внешней средой, только в этом случае возникающие структуры будут

189

устойчивы. Система должна быть открытой. Устойчивые структуры возникают при обмене с внешней средой энергией (или веществом - для биологических систем), которые могут поддержать отклонение от равновесия. Этот внешний поток не только гасит рост энтропии, но может привести к ее понижению. И еще: для самоорганизующихся систем непременными атрибутами являются сложное движение, описываемое нелинейными уравнениями, и пороговый характер возникновения. К основным свойствам самоорганизующихся систем относятся открытость, нелинейность, диссипативность. Система должна находиться в состоянии, далеком от равновесия.

Открытость системы обеспечивается непрерывным потоком вещества, энергии или информации, получаемым из внешней среды на поддержание определенного состояния. В таких системах флуктуации играют определяющую роль, могут привести к необратимому макроскопическому изменению состояния системы, разрушить созданный в ней порядок.

На нелинейные системы не распространяется принцип суперпозиции, т.е. возможно, чтобы совместные действия двух причин привели к результату, совершенно отличному от того, который был бы, если эти причины действовали по отдельности. Процессы в нелинейных системах носят пороговый характер — в состояниях, далеких от равновесия, слабые возмущения могут усиливаться и радикально перестроить систему. Нелинейные системы, открытые и неравновесные, сами создают в среде неоднородности. Между средой и системой может установиться положительная обратная связь (так, в реакции может вырабатываться фермент, присутствие которого стимулирует выработку его же самого). Важно найти эту петлю положительной обратной связи, и в системе начнется режим самоорганизации. В химии — это автокатализ, в молекулярной биологии — основа жизни. Системы неравновесные необычно и «чутко» реагируют на внешнее воздействие и «учитывают» их в своем функционировании. Поэтому некоторые слабые воздействия могут оказать на эволюцию системы большее влияние, чем сильные, но не адекватные собственным тенденциям системы.

Диссипативность — качественно своеобразное макроскопическое проявление процессов, происходящих на микроуровне. Она проявляется в разных формах: в способности «забывать» детали некоторых внешних воздействий; в «естественном отборе» среди многих микропроцессов для обеспечения основной тенденции развития; в когерентности микропроцессов, устанавливающей темп развития, и пр. С диссипативностью связано понятие «параметр порядка», который выделяет только ведущие степени свободы из всех возможных для системы.

В современной биологии одно из центральных мест занимают проблемы кооперативных эффектов и самоорганизации, соотношения «случая» и «необходимости». С появлением понятий биоценоза и биогеоценоза в биологических исследованиях стали применять методы математического моделирования, а использование ЭВМ для анализа процессов в сложных системах существенно обогатило науку о биосфере и экологию.

Элементы теории самоорганизованной критичности

Системы, состоящие из многих взаимодействующих элементов, постоянно самоорганизуются и могут достичь некоторого критического состояния, в котором даже малое событие вызывает цепную реакцию, могущую привести к катастрофе. Когда происходит что-то непредвиденное или катастрофа, то всегда ищут причину. Например,

190