Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo

.pdf
Скачиваний:
64
Добавлен:
15.08.2013
Размер:
2.94 Mб
Скачать
Here we assume that the incident wave
uinc = u0eik(x cos φ0+y sin φ0)

102 Chapter 5

First-Order Diffraction at Strips and Polygonal Cylinders

 

 

 

 

 

sin

%

π

 

 

 

 

 

 

 

 

sin

%

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(0)(1)

 

 

6

 

φ&

 

 

 

6 + φ&

 

 

 

,

 

 

 

 

 

(5.78)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= cos %

π

φ& − cos

π

+ cos %

π

+ φ& − cos

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

6

 

6

6

 

 

 

 

 

&

 

 

 

 

 

 

 

 

 

 

sin

 

π

 

 

 

 

 

 

 

 

 

 

 

 

sin

π

φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

f (0)(2)

 

 

 

 

 

 

 

 

 

 

 

,

g(0)(2)

 

 

 

 

 

%

 

 

,

(5.79)

= cos

π

 

− cos %

π

φ&

= cos

π

− cos %

π

φ&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

6

 

 

 

 

 

6

 

6

 

 

 

 

 

 

 

 

 

sin

 

π

 

 

 

 

 

 

 

 

 

 

 

 

sin

π

+

φ

&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

f (0)(3)

 

 

 

 

 

 

 

 

 

 

 

,

g(0)(3)

 

 

 

 

 

%

 

 

.

(5.80)

= cos

π

 

− cos %

π

+ φ&

= cos

π

− cos %

π

+ φ&

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

6

 

 

 

 

 

6

 

6

 

 

All these functions have singularities in the

forward direction φ

=

0, which cancel

(0)

 

each other, being substituted into the functions s,h . This results in the expression

s(0)(0, 0) = h(0)(0, 0) = ikl.

 

(5.81)

A similar situation with compensation of the singularities occurs for the specular direction φ = π/3, when

s(0)%

π

, 0&

 

l

 

π

h(0)%

π

, 0&

 

l

1

 

 

 

 

= ik

 

+ tan

 

e3 ,

 

= −ik

 

+

 

 

 

e3 . (5.82)

3

2

6

3

2

cos

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

Due to the symmetry of the problem, the same field is scattered in the direction of the specular reflection from the face 1–3:

s(0) %

π

, 0&

= s(0)%

π

, 0& ,

h(0)%

π

, 0&

= h(0) %

π

, 0& . (5.83)

 

 

 

 

3

3

3

3

It is worth noting that the sum of the dominant terms in the reflected fields (5.82) and (5.83) equals ±ikl and conforms to the field (5.81) scattered in the forward direction. This result is in agreement with the fundamental law that the total power of the reflected field (1.79) is asymptotically (with kl 1) equal to the total power of the shadow radiation (1.83).

5.2.2Backscattering: PO Approximation

(5.84)

propagates in the direction determined by the angle φ0 given in the interval −π φ0 ≤ 0, and the scattered field is evaluated in the opposite direction φ = π + φ0.

The basic feature of the PO approximation for the backscattering follows from the properties of functions f (0) and g(0) defined in Equations (3.55) to (3.57) through

TEAM LinG

5.2 Diffraction at a Triangular Cylinder

103

the local polar angles ϕ and ϕ0. These angles determine the directions to the field point and to the source of the incident wave, respectively. For the backscattering direction ϕ = ϕ0, it turns out that f (0)0, ϕ0) = −g(0)0, ϕ0). This means that the fields scattered back to the source by the acoustically soft and hard cylinders differ only in sign, and therefore their directivity patterns differ in this way as well:

s(0) = − h(0).

(5.85)

It is clear from the previous section that the scattered field consists of the sum of the edge waves. We again omit simple routine calculations of these waves and present the final expressions for the directivity patterns of the total scattered field. We have different expressions for different intervals of observation because of the different number of contributions to the scattered field.

In the interval 0 ≤ φ π/6, only two diffracted waves exist incoming from edges 2 and 3 (Fig. 5.9). In this interval,

(s0)(φ) = f (0)(2)e2 + f (0)(3)e3

where

 

 

 

 

 

 

 

1

 

 

f (0)(2) = −f (0)(3) = −

 

cot φ,

2

ψ2 = −2k(h cos φ + a sin φ),

ψ3 = −2k(h cos φ a sin φ)

with h = l cos(π/6) and a = l/2.

 

 

 

 

 

 

 

Equation (5.86) can be rewritten in the form

 

 

 

 

(0)(φ)

=

i cos φ

sin(2ka sin φ)

ei2kh cos φ

 

s

 

 

 

sin φ

 

 

 

 

which predicts the value

 

 

 

 

 

 

 

 

 

 

(0)(0)

=

i2kaei2kh

=

iklei2kh.

s

 

 

 

 

 

 

 

 

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

In the interval π/6 < φ < π/2, the scattered field consists of the three edge

waves, and respectively

 

 

 

 

 

 

 

 

 

 

 

 

 

s(0)(φ) = f (0)(1) + f (0)(2)e2 + f (0)(3)e3 ,

(5.91)

where

 

 

 

 

tan %

 

 

 

 

φ& ,

 

 

f (0)(1) = −

1

π

 

(5.92)

 

 

 

 

 

 

 

2

 

6

 

 

 

 

 

1

 

 

 

π

 

 

f (0)(2) =

 

 

)tan %

 

 

 

φ& − cot φ

* ,

(5.93)

2

6

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

f (0)(3) =

 

cot φ.

 

(5.94)

 

2

 

TEAM LinG

104 Chapter 5 First-Order Diffraction at Strips and Polygonal Cylinders

In the interval π/2 < φ < 5π/6, only two edge waves contribute to the total scattered field, and

s(0)(φ) = f (0)(1) + f (0)(2)e2 ,

(5.95)

with function f (0)(1) defined in Equation (5.92). The function f (0)(2) in this interval differs from Equation (5.93) and equals

f (0)(2) =

1

tan %

π

φ&

(5.96)

 

 

2

6

 

 

because the face 2–3 is not illuminated by the incident wave and does not generate the scattered field (in the framework of the PO approximation). In the specular direction

φ= 2π/3, Equation (5.95) determines the value

(0)

2π

= ikl,

(5.97)

s 3

which agrees with Equation (5.90).

In the interval 5π/6 < φ < π , again all three edges generate the scattered field, and the directivity pattern is determined by Equation (5.91), but with the different

functions f (0)(1) and f (0)(3):

2 )tan %

 

φ&

+ tan %

 

+ φ&*

 

f (0)(1) = −

6

6

(5.98)

 

 

 

1

 

 

 

π

 

 

π

 

 

and

 

 

 

 

 

 

 

 

 

 

f (0)(3) =

1

tan %

π

+ φ& .

 

 

 

(5.99)

 

 

 

 

 

2

 

6

 

 

 

 

 

 

 

However, the function f (0)(2) is still defined by Equation (5.96). The function (5.98) differs from (5.92) because in this interval of observation, two faces 1–2 and 1–3 are illuminated. The function (5.99) differs from Equation (5.94) because the different faces of edge 3 are illuminated in the intervals 0 ≤ φ < π/2 and 5π/6 < φ π .

5.2.3 Symmetric Scattering: First-Order

PTD Approximation

Here, the acoustic quantity s( h) is equivalent to the directivity pattern of the Ez(Hz)-

component of the electromagnetic field

To improve the PO approximation, we include into the scattered field the contributions generated by the nonuniform scattering sources js,h(1). In the first-order approximation, they have the form of edge waves (4.12) and (4.13). When these waves are added to

TEAM LinG

5.2 Diffraction at a Triangular Cylinder

105

the PO edge waves (3.53) and (3.54), one can see that (due to relationships (4.14) and (4.15)), the resulting edge waves are defined by the Sommerfeld asymptotics (2.61) and (2.63). Because the acoustically soft and hard cylinders are perfectly reflecting (nontransparent), only those edge waves contribute to the scattered field, which come from the edges visible from the observation point. We also note that in this section we consider the symmetric case when the incident wave is given by Equation (5.72) and propagates along the bisector of the cylinder (Fig. 5.9). The basic polar coordinates r, φ are used in the following for the description of the scattered field and the angle φ changes in the interval 0 ≤ φ π .

In accordance with these comments, the directivity patterns of the scattered field

can be written as follows. In the interval 0 ≤ φ > π/6,

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

s, 0) = f (2)e2 + f (3)e3 ,

 

 

 

 

 

 

(5.100)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

h, 0) = g(2)e2 + g(3)e3 ,

 

 

 

 

 

 

(5.101)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (2)

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

g(2) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

n n

 

 

 

 

n +

 

5

+ n

 

n

 

 

π

 

π

 

φ

 

 

 

π

 

 

 

π

 

 

 

 

cos

cos

 

 

 

cos

 

cos

 

 

φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

with 0 ≤ φ π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.102)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (3)

sin

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

,

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(3) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

n + n

 

 

 

 

n +

 

5

n

 

n

 

 

π

 

π

φ

 

 

π

 

 

 

 

π

 

 

 

 

cos

cos

 

 

cos

 

cos

 

φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with 0 ≤ φ π/2,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.103)

where n = α/π = 5/3 (here α = 5π/3 is the external angle between the faces of the edge) and ψ2,3 is defined in Equation (5.76). The first terms in these functions are singular for the forward direction (φ = 0). However, the singularities of the functions related to the edges 2 and 3 cancel each other, resulting in the expressions

 

 

 

 

 

 

 

 

 

2

 

sin

π

 

 

 

 

1

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s(0) = ikl

 

 

 

cot

 

 

 

 

 

 

 

 

 

 

 

 

 

,

(5.104)

n

n

 

π

 

+ cos

π

 

 

 

 

 

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

5

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

sin

π

 

 

 

 

1

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h(0) = ikl

 

cot

 

 

 

 

 

 

 

 

 

 

 

 

 

.

(5.105)

n

n

 

cos

 

π

 

+ cos

π

 

 

 

 

 

 

 

 

 

n

 

5

 

 

 

TEAM LinG

106 Chapter 5 First-Order Diffraction at Strips and Polygonal Cylinders

Comparison of these equations with Equation (5.81) shows that the first term here relates to the PO field and the last two terms represent the contributions from the nonuniform component js,h(1).

In the interval π/6 < φ < π/2, three edge waves form the total scattered field:

 

 

 

 

s(φ) = f (1) + f (2)e2 + f (3)e3 ,

 

 

 

 

 

 

(5.106)

 

 

 

 

h(φ) = g(1) + g(2)e2 + g(3)e3 ,

 

 

 

 

 

 

(5.107)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (1)

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(1) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

cos

π

 

cos

 

π

φ

cos

π

 

cos

π

 

φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

n

n +

n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with π/6 ≤ φ π .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.108)

There is the specular direction (φ = π/3) in this sector of observation. In this direction, the second terms in functions f (1), g(1) and f (2), g(2) are singular. However, these singular terms cancel each other, and the scattered field remains finite:

s %

π

&

 

l

 

1

 

%tan

π

 

 

π

& + f (3)e3 ,

 

 

= ik

 

 

+

 

 

 

+ cot

 

(5.109)

3

2

 

n

n

n

h %

π

&

 

 

 

l

 

 

1

%tan

π

 

 

π

& + g(3)e3 .

 

 

= −ik

 

+

 

 

− cot

 

(5.110)

3

2

n

n

n

Due to the symmetry of the problem, these equations also describe the field in the direction of specular reflection from the face 1–3. Here the comments presented at the end of Section 5.2.1 are also pertinent. The power of the total reflected field is asymptotically equal to the power of the shadow radiation determined by the first term in Equations (5.104) and (5.105). It is also clear that the dominant term ±ikl/2 in Equations (5.109) and (5.110) relates to the PO contribution.

In the interval π/2 < φ < 5π/6, the edge 3 is invisible and the scattered field

consists of two edge waves:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s(φ) = f (1) + f (2)e2 ,

 

 

 

 

 

 

 

(5.111)

 

 

 

 

 

 

 

h(φ) = g(1) + g(2)e2 .

 

 

 

 

 

 

 

(5.112)

In the interval 5π/6 < φ π , all three edges are visible and the scattered field

is determined again by Equations (5.106) and (5.107) with the functions

 

f (3)

 

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g(3)

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

cos

π

 

cos

 

π

φ

cos

π

 

cos

 

π

 

φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

n

n

n

+

 

n

+ n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with 5π/6 ≤ φ π .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.113)

TEAM LinG

5.2 Diffraction at a Triangular Cylinder

107

Figure 5.10 Sector 0 ≤ ϕ3 ≤ 5π/3 is the domain of the functions f (3) and g(3). The field point (r, φ) is located in the region 0 ≤ φ π .

This expression is different from Equation (5.103), although both are the exact forms of the same generic expressions (2.62) and (2.64). This difference is due to the fact that the local polar coordinate ϕ3 (used in the generic definition of functions f (3) and g(3)) cannot be described in the regions ϕ3 < π/6 and ϕ3 > π/6 (Fig. 5.10)

by a single expression in terms of the basic coordinate φ under the restriction 0 ≤ φ π .

Notice also that the asymptotic expressions found above for the quantities uh and dus/dφ are discontinuous in the directions φ = π/6, φ = π/2, and φ = 5π/6, which are the geometrical optics boundaries for the edge waves. These discontinuities can be diminished when the higher-order edge waves (arising due to multiple edge diffraction) are taken into account. However, as shown in Section 5.2.5, such discontinuities are already not significant in the case when l ≥ 3λ.

It is easy to construct similar asymptotics for the bistatic scattering for arbitrary directions of the incident wave. However, their shortcoming is the grazing singularity (4.20) and (4.21), which appears in the case of the grazing directions of the incident wave. This singularity can be removed with application of the uniform theory developed in Section 7.9. An alternative procedure free from the grazing singularity is based on truncation of elementary strips (Michaeli, 1987; Breinbjerg, 1992; Johansen, 1996).

5.2.4Backscattering: First-Order PTD Approximation

Here, the acoustic quantity s( h) is equivalent to the directivity pattern of the Ez(Hz)-

component of the electromagnetic field.

TEAM LinG

108 Chapter 5 First-Order Diffraction at Strips and Polygonal Cylinders

In the previous section it was explained that in the first-order PTD approximation, the field scattered by a triangular cylinder is a linear combination of the edge waves defined in general form by Equations (2.61) and (2.63). Now we apply this PTD theory for the investigation of the backscattering, assuming that the incident wave is given by Equation (5.84) with −π φ0 ≤ 0. The scattered field is found in the direction φ = π + φ0 in the sector 0 ≤ φ π . The geometry of the problem is shown in Figure 5.9. We omit the simple but tedious calculations of the individual edge waves in terms of the basic coordinates r, φ and present the final expressions for the directivity patterns of the total scattered field.

In the interval 0 ≤ φ π/6,

 

 

s(φ) = f (2)eikψ2 + f (3)e3 ,

 

 

 

 

(5.114)

 

 

h(φ) = g(2)eikψ2 + g(3)e3 ,

 

 

 

 

(5.115)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (2)

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

1

 

 

 

 

 

1

 

 

 

 

n

 

 

 

 

 

 

 

 

 

g(2) =

n

 

 

 

 

 

 

 

 

 

 

 

 

2φ

 

cos

π

 

 

π

 

 

π

 

 

 

 

 

 

 

 

− 1

cos

 

 

cos

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

n

n

+ n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with 0 ≤ φ π ,

 

 

 

 

 

 

 

 

(5.116)

f (3)

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

g(3) =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

cos

π

 

 

π

 

 

π

 

2φ

 

 

 

 

 

 

− 1

cos

 

 

cos

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

n

n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with 0 ≤ φ π/2.

 

 

 

 

 

 

 

 

(5.117)

Here, the edge parameter equals n = α/π = 5/3, and the quantities ψ2,3 are defined in Equation (5.88). It follows from these equations that for the direction φ = 0,

 

 

ikl

 

 

 

 

 

 

 

 

2

 

sin

π

ei2kh

 

 

 

 

 

 

1

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

s(0)

 

 

 

 

cot

 

 

 

n

n

 

,

(5.118)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

+ n

 

 

 

n

+ cos

n

− 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

sin

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

n

n

 

 

 

 

 

 

 

− 1

 

 

 

 

 

+ cos

n

 

 

h(0)

 

 

ikl

 

 

 

1

cot

π

 

 

 

 

 

n

 

 

 

n

 

ei2kh,

(5.119)

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where h = l cos(π/6).

In the interval π/6 < φ π/2, the additional wave appears incoming from

edge 1. Hence, in this interval,

 

s(φ) = f (1) + f (2)eikψ2 + f (3)e3

(5.120)

 

TEAM LinG

5.2 Diffraction at a Triangular Cylinder

109

and

 

h(φ) = g(1) + g(2)eikψ2 + g(3)e3 ,

(5.121)

where functions f (2), f (3) and g(2), g(3) are defined in Equations (5.116) and (5.117) and

g(1)

=

 

π

 

 

 

π

 

 

n

 

 

 

f (1)

 

sin

n

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

− 1

 

 

 

 

 

n

with π/6 < φ π .

 

 

 

1

 

 

 

 

 

,

 

n

 

5

n

 

 

 

 

cos

π

 

cos

π

 

2φ

 

 

 

 

 

 

 

 

 

(5.122)

In the interval π/2 < φ < 5π/6, the diffracted wave from edge 3 disappears, and

s(φ) = f (1) + f (2)eikψ2

and

h(φ) = g(1) + g(2)eikψ2 .

There is the specular direction φ = 2π/3 in this interval, where

s

 

 

 

 

 

 

 

 

 

 

 

 

2

sin

 

π

 

 

 

2π

1

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

= ikl +

 

 

cot

 

 

 

+

 

 

 

n

 

 

3

 

n

n

cos

π

 

 

1

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

h

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

sin

π

 

 

 

2π

 

1

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

= −ikl

 

 

cot

 

 

 

+

 

 

 

 

n

 

 

.

 

3

 

n

 

n

cos

π

 

1

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.123)

(5.124)

(5.125)

(5.126)

Due to the symmetry of the problem, these expressions differ from Equations (5.118) and (5.119) only by the absence of the phase factor ei2kh (caused by the choice of the incident wave in the form of Equation (5.84) and by the choice of the coordinates origin at the edge 1).

In the interval 5π/6 < φ π , all three edges generate the scattered field, which again is determined by Equations (5.120) and (5.121), where the functions f (3), g(3) are defined by the expressions

f (3)

sin

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

n n

 

 

2φ

,

(5.127)

g(3) =

 

π

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

− 1

 

cos

 

+ cos

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

n

n

 

 

different from Equation (5.117). These expressions complete the description of the backscattered field.

TEAM LinG

110 Chapter 5 First-Order Diffraction at Strips and Polygonal Cylinders

5.2.5Numerical Analysis of the Scattered Field

Here, the scattering cross-section σsh) for acoustic waves is equal to the scattering

cross-section for electromagnetic waves with the component Ez(Hz).

Numerical calculations were performed for the normalized scattering cross-section (5.20)

σs,h

 

 

s,h(φ)

 

2

 

 

 

 

 

 

kl2

=

 

kl

 

(5.128)

 

 

 

 

 

 

in the decibel scale for the equilateral cylinder with the parameter kl = 6π when l = 3λ. The results are plotted in Figures 5.11 and 5.12 for symmetric scattering (when the incident wave propagates in the direction parallel to the cylinder bisector; Fig. 5.9) and in Figures 5.13 and 5.14 for backscattering.

As is seen in Figures 5.11 and 5.12, PTD significantly improves the PO approximation at the minima of the scattering cross-section. The difference between the PTD and PO data is also appreciable at maxima. This difference is pronounced for the acoustically hard cylinder and it reaches about 6–9 db in the sector 160–180. A similar situation is observed for the backscattering in Figures 5.13 and 5.14. In particular,

Figure 5.11 Bistatic scattering at an acoustically soft cylinder (Ez -polarization of the electromagnetic wave).

TEAM LinG

 

 

 

5.2 Diffraction at a Triangular Cylinder

111

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 Bistatic scattering at an acoustically hard cylinder (Hz -polarization of the electromagnetic wave).

the difference between the PTD and PO curves for the acoustically hard cylinder is about 5–9 db in the directions 50–70 and 170–180.

Notice that more accurate PTD results for triangular cylinders are presented in the paper by Johanson (1996), where the second-order edge waves are partially taken into account.

Figure 5.13 Backscattering at an acoustically soft cylinder (Ez -polarization of the electromagnetic wave).

TEAM LinG

Соседние файлы в предмете Оптика