Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Manufacturing.pdf
Скачиваний:
213
Добавлен:
23.08.2013
Размер:
3.54 Mб
Скачать

page 354

57. ULTRA SONIC MACHINING (USM)

First built 1950s.

Originally used for finishing EDM surfaces.

Best suited to poorly conducting materials, and brittle materials.

The basic process is a ductile and tough tool is pushed against the work with a constant force. A constant stream of abrasive slurry passes between the tool and the work to provide abrasives and carry away fractured particles. The majority of the cutting action comes from an ultrasonic (cyclic) force applied in addition to the other force.

tool

 

 

 

fx = 20 KHz

Ffeed

 

x

Ax = 15-20 micro m

abrasive slurry

work

The basic components to the cutting action are believed to be,

1.The direct hammering of the abrasive into the work by the tool (major factor)

2.The impact of the abrasive on the work

3.Cavitation induced erosion

4.Chemical erosion caused by slurry

M.C. Shaw generated a model to estimate the cutting action.

Q

vZf

Q = volume of work material removal rate

v =

volume of material removed per particle imapct

Z =

number of particles impactingpercycle

f =

frequency (cycles per second)

• Consider the impact pictured below.

page 355

grain impact

work

 

 

 

d/2

h

d/2

d/2-h

 

 

 

 

 

 

D/2

 

 

 

 

 

D

 

D 2

=

d 2

d

2

---

--

--

h

2

 

2

 

2

 

D2 = 4dh – 4h2

assume the impact depth ‘h’ is small compared to d.

D ≈ 2dh

now assume

D3(volume) v(volume per impact)

 

3

3

Q vZf D3Zf

--

--

( dh) 2

( dh) 2 Zf

page 356

Also assume the force is as shown below,

+

T/4

approximate with triangle

 

Fimax

 

delta T

 

Fstatic

-

T

 

 

-ve force means no contact, and no force to abrasive

F =

1

T

 

 

 

 

 

 

 

 

 

 

 

 

-- Fi( t) dt

 

 

 

 

 

 

 

 

T

0

 

 

 

 

 

 

 

 

 

 

 

 

or F

1

 

 

1

 

 

 

 

 

 

 

 

 

--F

t--

 

 

 

 

 

 

 

 

2

 

imax

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tool

 

 

 

 

A

 

tool at highest

point

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

tool at mid position

 

 

 

 

C

 

tool touches grain

 

 

 

 

 

 

 

D

 

 

 

 

 

 

 

 

 

 

 

 

tool pushes grain

to lowest point

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

work

 

 

 

 

 

 

 

When the tool has pushed the grain to the lowest point, the tool-grain-work interface looks like,

page 357

ht

D

 

 

 

 

 

 

hw

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total indent is therefore

h = ht + hw

If A is the amplitude of oscillation of the tool, the average velocity from B to D is,

vB D

A

--------

 

T

 

--

 

4

t

dist·

h

1

 

T

=

 

ht + hw

T

--------- =

--

--

----------------

--

 

 

 

vel

 

A

4

 

 

A

 

4

F

Fimax t

Fimax

 

ht

+ hw

T 1

 

 

---------- ----

----------

 

----------------

----

 

 

 

2 T

2

 

A

 

4 T

 

 

 

 

 

8FA

 

 

 

 

 

 

 

 

Fimax ≈ ----------------

 

 

 

 

 

 

 

 

 

 

 

ht + hw

 

 

 

 

 

 

 

 

This force is applied to 2 grains to give a force per grain

 

 

=

Fi

 

 

F

 

max

 

g

----------

 

 

 

Z

 

 

The contact area per grain is

 

 

 

 

D

2

Ag = π

---

= π dhw

2

Therefore the maximum stress is

σ w

=

Fimax

=

Fg

=

8FA

 

π----------------Zdhw

-----

π--------------------------------------Zdhw

( hw

+ ht)

 

 

 

Ag

 

Assume that the depth of penetration is inversely proportional to the flow stresses (this is reasonable if the other forces and geometries remain constant)

 

h

1

 

 

 

--

 

 

tool/work indentation ratio

 

 

σ

σ

 

 

ht

=

w

λ

-----

------ =

 

hw

 

σ

t

 

page 358

Flow stress sigma and Brinell hardness H are the same so,

hw2 =

-----------------------------------8FA

 

π ZdHw( 1 + λ )

We can assume the number of grains per impact is,

 

 

C

 

Z = χ

----

 

d

2

 

 

 

 

 

C =

concentration of grains yurinlshet

χ =

constant of proportionality

thus hw

=

8FAd

πχ------------------------------------HwC( 1 + λ )

 

 

 

 

further

Q

 

d8FAd

 

 

π--------------------------------HwC( 1 + λ )

 

 

 

 

3

--

2χ

C

----f d2

3

1

3

1

--

--

--

--

Q

A4 d4 F4 C4

-------------------------f

 

3

 

--

 

Hw4

Material is also removed by grains moving quickly and building up kinetic energy. When they strike the work surface, they transfer their energy quickly causing surface work. This effect is smaller than hammering.

The grains are not actually perfectly spherical, and as a result smaller rounds actually lead to faster machining.

page 359

actual

d4

d

d3

theoretical

d2

d1

we can approximate d1 = d*d and

use d1 in place of d for the calculations

(all units in mm)

The relationship has been experimentally determined to be more like,

 

3

3

1

 

 

-- -- --

 

Q

dF4 A4C4

 

---------------------------f

 

 

3

 

3

 

 

--

 

--

 

 

Hw4 ( 1 + λ ) 4

theory

mrr (Q)

 

 

 

 

 

 

 

 

actual

 

 

 

 

feed force (F)

mrr

 

 

 

mrr

 

 

 

 

 

 

 

 

theory

fincreases

actual

f

A

• mmr decreases when static force F gets high enough to crush abrasive grains.

page 360

mrr

A increases

F (feed force)

mrr

lambda = tool/work hardness

• f = 16.3 KHz, A = 12.5 micro m, grain = 100 mesh.

work material

relative mrr

 

 

glass

100.0

brass

6.6

tungsten

4.8

titanium

4.0

steel

3.9

chrome steel

1.4

• If d approaches A the grains start to crush.

page 361

mrr

 

mrr

 

theory

 

 

 

B4C

 

actual

SiC

 

 

 

d

C (abrasive concentration %)

 

1.0

 

 

relative mrr

 

 

 

 

0.25

 

 

 

 

0.2

 

0.8

viscosity (poise)

 

 

 

 

100

 

 

 

 

 

 

glass

 

average

75

 

 

 

surface

 

 

 

 

 

 

 

roughness

 

 

 

 

(micro m)

50

 

 

 

 

25

 

tungsten carbide

 

 

 

 

 

 

50

100

150

 

mean grain dia. (micro m)

• Example - Find the machining time for a hole 5mm in diameter in a tungsten carbide plate 1cm thick. The grains are .01mm in diameter, the feed force is 3N, and the amplitude of oscillation

page 362

is 20 micro m at a frequency of 25KHz. The fracture hardness is approximately 6900N/mm2. The slurry is mixed in equal parts water and abrasive.

 

 

 

 

 

 

 

 

 

 

 

volume = 1

 

 

 

 

 

 

 

a

a

 

 

 

 

 

 

 

 

Therefore,

 

 

 

 

 

 

 

 

 

 

 

d=.01 * 10-3 m

a

 

 

 

 

 

 

 

 

F = 3N

 

 

 

 

 

 

 

 

 

 

A = 20 * 10-6 m

 

 

 

 

 

 

 

 

 

f = 25 KHz

 

 

 

 

 

 

 

 

 

H = 6900 * 106

N/m2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w

 

 

 

 

 

d

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

--

 

 

 

tool gap b = d

Q =

π ( dH )

2

Zf

 

 

--

 

 

 

N cubes in contact area

 

3

w

 

 

 

 

hw

8FA

a

3

= N

4

π r

3

-------------------------------------

 

--

 

 

 

π Zd1Hw

( 1 + λ )

 

 

 

3

 

 

We still need Z, d1, lambda, therefore find with,

 

 

 

 

 

 

Z

1 4a2

assumes a square hole

 

 

 

 

 

 

-- --------

 

 

 

 

 

 

2 π

d2

 

 

 

 

 

 

 

λHw

=------ = 5(assumed)

Ht

d1 = d2 (mm)

Therefore Z = ?????, hw = ?????????, Q = ?????????? mm3/sec considering the volume of the hole, the required time is,

 

V

 

5mm

2

( 1cm)

 

π

2

 

 

 

 

-----------

 

 

t =

---

= ---------------------------------------

 

 

=

 

Q

 

????

• Basic machine layout,

page 363

feed

 

mechanism

 

position indicator

manual drive

 

machine body

acoustic head

 

tool

slurry pump

work

 

work table

slurry tank

 

ultrasonic drilling machine

The acoustic head is the most complicated part of the machine. It must provide a static force, as well as the high frequency vibration

The magnetostrictive head is quite popular,

page 364

 

20KHz and up

 

signal

 

generator

cooling fluid

magnetic core with

 

 

windings

Basic Idea - the coil induces a

 

 

vibration when the alternating

 

 

magnetic filed reverses

resonant concentrator

 

 

 

 

tool

 

For magnetostrictive head,

λc 1 E

=- = -- --

f f ρ

Magnetostrictive materials should have a good coupling of magnetic and mechanical energy,

Kr

Ew

= ------

 

Em

where,

Ew = mechanical energy Em = magnetic energy

material

coeff.magnetostrictive

coeff. of

 

elongation 10**6 (Ems)

magnetomechanical

 

 

elongation, Kr

 

 

 

Alfer (13% Al, 87% Fe)

40

0.28

Hypernik (50% Ni, 50% Fe)

25

0.20

Permalloy (40% Ni, 60% Fe)

25

0.17

Permendur (49% Co, 2% V, 49% Fe)

9

0.20

page 365

The vibrating head is supplied with a constant force using,

-counter weights

-springs

-pneumatics and hydraulics

-motors

counterweight

counterweight and pulley

counterweight with lever and fulcrum

fulcrum system

counterweight

electric solenoid control

core and solenoid coil

page 366

spring control

hydraulic (pneumatic) control

If a tool is designed to increase flow, better cutting speeds will occur.

Tools

-hard but ductile metal

-stainless steel and low carbon

-aluminum and brass tools wear near 5 to 10 times faster

Abrasive Slurry

-common types of abrasive

-boron carbide (B4C) good in general, but expensive

-silicon carbide (SiC) glass, germanium, ceramics

-corundum (Al2O3)

-diamond (used for rubies, etc)

-boron silicarbide (10% more abrasive than B4C)

-liquid

-water most common

-benzene

-glycerol

-oils

-high viscosity decreases mrr

-typical grit size is 100 to 800

Little production of heat and stress, but may chip at exit side of hole. Sometimes glass is used on the back side for brittle materials.

Summary of USM characteristics

-mechanics of material removal - brittle fracture caused by impact of abrasive grains due to vibrating at high frequency

-medium - slurry

-abrasives: B4C; SiC; Al2O3; diamond; 100-800 grit size

-vibration freq. 15-30 KHz, amplitude 25-100 micro m