Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Manufacturing.pdf
Скачиваний:
213
Добавлен:
23.08.2013
Размер:
3.54 Mб
Скачать

page 387

60. ELECTRON BEAM MACHINING

The basic physics is an electron beam is directed towards a work piece, the electron heat and vaporize the metal.

Typical applications are,

-annealing

-welding

-metal removal

electrons accelerated with voltages of approx. 150,000V to create velocities over 200,000 km/ sec.

beam can be focused to 10 to 200 micro m and a density of 6500 GW/mm2

good for narrow holes and slots.

e.g. a hole in a sheet 1.25 mm thick up to 125 micro m diameter can be cut almost instantly with a taper of 2 to 4 degrees

the electron beam is aimed using magnets to deflect the stream of electrons

a vacuum is used to minimize electron collision with air molecules.

beam is focussed using an electromagnetic lens.

ASIDE: Power density available from different processes power density (W/mm2)

108

electric discharge

 

 

 

 

 

106

laser beam

 

 

 

 

 

 

 

 

 

electron beam

 

104

 

 

 

 

 

 

 

welding arc

 

102

 

 

 

gas flame

 

 

 

 

1

 

 

 

feature size ( m)

 

 

 

 

10

102

103

104

105

page 388

• The process looks like,

 

cathode

hot tungsten

 

 

-

 

emits electrons

 

 

+

anode

 

 

 

electromagnetic lens

 

 

electron beam

vacuum chamber

 

 

(10-5 mmHg)

 

beam deflector

 

workpiece

 

• Some examples of cutting performance are given below,

 

 

 

 

 

EBM DRILLING EXAMPLES

 

 

 

 

 

 

 

material

 

workpiece

 

Hole

 

Drilling

 

Accelerating

 

Beam

 

 

 

 

 

 

 

 

 

thickness

 

diameter

 

time

 

Voltage

 

Current

 

 

 

(mm)

 

(micro m)

 

(sec)

 

(KV)

 

(micro A)

 

 

 

 

 

 

 

 

 

 

 

 

 

tungsten

 

0.25

 

25

 

<1

 

140

 

50

 

stainless steel

 

2.5

 

125

 

10

 

140

 

100

 

stainless steel

 

1.0

 

125

 

<1

 

140

 

100

 

aluminum

 

2.5

 

125

 

10

 

140

 

100

 

alumina (Al2O3)

 

0.75

 

300

 

30

 

125

 

60

 

Quartz

 

3.0

 

25

 

<1

 

140

 

10

page 389

 

EBM SLOT CUTTING EXAMPLES

 

 

 

Material

 

Workpiece Slot

Cutting

Accelerating

Average

 

 

 

 

 

 

thickness

Width

Speed

Voltage

Beam

 

 

 

 

(mm)

(micro m)

(mm/min)

(KV)

Current

 

 

 

 

 

 

 

 

 

 

 

(micro A)

 

 

 

 

 

 

 

 

 

 

 

 

 

Stainless steel

 

0.175

 

 

100

50

 

130

50

 

tungsten

 

0.05

 

 

25

125

150

30

 

brass

 

0.25

 

 

100

50

 

130

50

 

alumina

 

0.75

 

 

100

600

150

200

• typical energy requirements for cutting are,

 

 

 

 

 

 

Material

 

 

C (W/mm3/min)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tungsten

 

 

12

 

 

 

 

 

 

Fe

 

 

 

 

7

 

 

 

 

 

 

Ti

 

 

 

 

6

 

 

 

 

 

 

Al

 

 

 

 

4

 

 

 

 

e.g. to cut a 150 micro m wide slot in a 1mm thick tungsten sheet, using a 5KW power source, determine the cutting speed.

-assume speed is v mm/min

-Q = 150/1000 * 1 * v mm3/min

-beam power P = CQ = 12 ( 150/1000) v = 5000 therefore, v = 46 mm/sec

Basic mechanics,

page 390

Me = 9.109×

10–31kg

electron properties

C = 1.602× 10–19 coulombs

 

 

1

 

 

2

2

 

 

E =

--M

e

( u

 

u ) e V

 

potential field accelerated through

 

2

 

 

o

 

electron charge

final velocity

initial velocity

electron with energy E

vacuum

 

 

 

 

 

material

transparent layer

total range

δ

the electron travels through the vacuum until it strikes the material. They generally penetrate the top layer, then become trapped in some layer beneath the surface.

δ = 2.6× 10

–17 V2

-----

ρ ( mm)

V =

Accelerating potential (V)

ρ =

material density (kg/mm3)

• e.g.

page 391

When drilling steel with EBM an accelerating voltage of 150KV is used. What is the electron range?

ρ

= 76× 10

–7

 

kg

 

 

----------

 

 

 

mm3

δ× –17 150× 103 2 µ

=2.6 10 -------------------- mm = 77 m

76× 10–7

the heat rise can be estimated using a one dimensional heat flow equation

∂θ( z, t)

=

α∂ 2θ ( z, t)

1

t

z2

+ Cp H( z, t)

-----------------

 

------------------------

-----

θ= temperature of metal

α= thermal diffusivity

z

= distance from surface

 

 

t

= time

 

 

 

 

 

Cp = specific heat of metal

 

 

ρ

= metal density

 

 

 

 

H( z, t)

 

= heat source intensity

 

H( z)

= Aebz

 

 

 

 

 

 

A =

constant

 

 

 

 

 

 

b =

constant of energy absorption by the metal

 

∂θ( z, t)

=

α∂ 2θ ( z, t)

+

A

e

bz

-----------------t

 

------------------------z2

ρ---------Cp

 

 

 

 

 

 

 

page 392

now assume,

1.the metal body is semi-infinite

2.the surface of the metal is insulated, except for the hot spot

3.the heat H(z) remains constant over time

longer pulses lead to the

 

 

hot spot near the surface

 

 

theta

 

 

 

 

 

 

τ 3 large

 

 

 

pulse durations

 

 

 

τ 2 medium

 

 

 

τ 1 short

Z3

Z2

Z1

z

 

 

 

• We can estimate the melting temperature with,

 

 

 

 

P

Z = 0.1

------------------------------

θ

m kdvρ Cp

• e.g.