Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(EOD).Manufacturing.pdf
Скачиваний:
213
Добавлен:
23.08.2013
Размер:
3.54 Mб
Скачать

page 375

58.2 PRACTICE PROBLEMS

1.We try an EDM process where the copper tool has a mass of 200g before beginning and 180g after. The iron workpiece drops from 3.125kg to 3.096kg, but has rounded corners.

a)What is the tool wear factor?

b)If the tool was cylindrical to begin with, draw sketches of the electrode before and after.

2.What are the selection criteria for choosing between machining and EDM?

ans. EDM is particularly useful when dealing with internal cuts that are hard to get tools into. Machining tends to work best with external cuts. EDM is suitable for removal of smaller amounts of material at a much slower rate.

58.3 REFERENCES

Ghosh, A., Manufacturing Science, Ellis Horwood Ltd., Chichester, UK, 1986.

Lascoe, O.D., Handbook of Fabrication Processes, American Society of Materials, Metals Park, Ohio, 1988.

59. ELECTROCHEMICAL MACHINING (ECM)

The physics - an electrode and workpiece (conductor) are placed in an electrolyte, and a potential voltage is applied. On the anode (+ve) side the metal molecules ionize (lose electrons) break free of the workpiece, and travel through the electrolyte to the electrode (a cathode; has a -ve charge; a surplus of electrons).

NOTE: in EDM an arc was used to heat metal, here the metal dissolves chemically.

page 376

cathode electrode

electrolyte

current density (closer sections have higher density)

anode work

electrode is moved down to cut

Variation in the current density will result in work taking the electrodes shape.

The electrode is fed with a constant velocity, and the electrolyte is fed through the tool. The tool is designed to eliminate deposition of the ionized metal on the electrode.

electrolyte is pumped

using high pressure

insulation

Vs

electrolyte splashes out

Supply V = 8 to 20V, I = >1000A.

Electrode gap is typically 0.1 to 0.2 mm.

mrr is about 1600mm3/min. per 1000A, OR 3KWhr for 16000 mm3 (not very efficient, 30 times

page 377

more than standard machining techniques).

mrr is independent of material hardness.

Good for low machinability, or complicated shapes.

Very little tool wear,

Forces are large with this method because of fluid pumping forces.

Faraday’s laws state that,

m =

Itε

------

 

 

F

m =

weight (g) of a material

I

=

current (A)

t

=

time (sec)

ε

=

gram equivalent weight of the material

F= constant of proportionality - Faraday (96,500 coulombs)

The basic principle is shown below

Cu

Fe

 

could be a battery, or electroplating, or ECM bath

NaCl + H2O electrolyte

• The chemical reaction between an electrode and the electrolyte leads to electrons being added, or removed from the electrode metal. This addition/subtraction leads to a voltage potential.

page 378

For Iron

 

 

 

 

Fe

Fe2 +

+ 2e

V2

= –0.409V

For Copper

 

 

 

 

Cu

Cu2 +

+ 2e

V1

= 0.304V

• To make a battery.

 

I

 

 

Cu

+

-

Fe

 

V

 

 

 

+

-

+

-

 

V1

 

V2

 

 

 

 

V = V1 - V2

V = 0.304V - (-0.409V) = 0.713V

 

 

 

2e

 

 

 

2e

 

 

2( H2O)

Fe +

+

 

 

 

H

2

+ 2( OH)

Fe( OH) 2

 

 

 

 

 

 

 

2( OH)

= 2e

 

• To do electrolysis.

I

Fe

+

-

Cu

 

 

V

 

 

electron

 

 

flow

 

page 379

In the iron (anode) - the iron dissolves, and 2 electrons are pulled out by the battery.

Fe Fe++ + 2e

In the copper (cathode) - extra electrons are pushed in

by the battery and they go to the electrolyte. The electrons liberate hydrogen gas, and create a base.

2e + 2H2O H2 + 2( OH)

hydroxides, and the radical iron react to create an insoluble precipitate that falls to the bottom.

Fe++ + 2( OH) Fe( OH) 2

The electrodes and electrolyte are chosen so that deposition does not occur at either electrode. (In electrolysis we would want deposition at one of the electrodes.)

• The mrr is,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AI

cm

3

 

 

0.1035 10

–2

 

 

1

 

 

cm

3

 

Q =

 

=

 

 

 

 

 

----------

----------

------------------------------ρ

 

 

---------------

 

--------------

 

ρ ZF sec

 

 

 

 

x

Z

A sec

 

 

 

 

 

 

 

 

 

 

--------i

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ai

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

for alloys

• e.g.

page 380

Using ECM remove 5cm3/min from an iron workpiece. What current is required?

Q =

5

cm3

 

= 5

cm3

 

1min

=

5 cm3

---------min

 

---------min

 

-----------------

60----- ----------sec

 

 

 

 

 

60 sec

 

I

= ?

 

 

 

 

 

 

 

 

 

 

A = 56g (periodic table)

 

 

ρ

 

 

 

g

 

 

 

 

 

 

 

= 7.8

---------

(from handbook)

 

 

cm

3

 

 

 

 

 

 

 

 

 

 

 

 

 

Z = 2 (from chemical reaction)

 

 

F = 96, 500 coulombs

 

 

 

5

=

 

 

56I

 

 

 

 

-----

7.8--------------------------------------

( 2) ( 96, 500)

 

 

 

60

 

 

 

 

I= 2240A

Actual rates may vary from theory as other factors come into effect.

Theory

for nickel

mrr (g/min)

Current (A)

This can be caused by other chemical reactions also taking place. e.g. production of Fe3+ instead of Fe2+ ions can result when a

larger current or different electrolyte is used.

• The table below shows various materials and relevant properties,

page 381

metal

gram atomic

valency of

density

 

weight

dissolution

(g/cm3)

aluminum

26.97

3

2.67

chromium

51.99

2/3/6

7.19

cobalt

58.93

2/3

8.85

copper

63.57

1/2

8.96

iron

55.85

2/3

7.86

nickel

58.71

2/3

8.90

tin

118.69

2/4

7.30

titanium

47.9

3/4

4.51

tungsten

183.85

6/8

19.3

zinc

65.37

2

7.13

silicon

28.09

4

2.33

manganese

54.94

2/4/6/7

7.43

carbon

 

2/4

1.8-2.1

• e.g.

page 382

The composition of the Nimonic 75 alloy is given below. Find the mmr for a current of 1000A.

 

 

 

 

 

 

 

Q =

0.1035× 10–2

 

 

1

 

 

------------------------------

 

---------------------

 

ρ

 

x Z

 

 

 

 

 

--------

 

 

 

 

i

i

 

 

 

 

 

Ai

 

 

 

i

 

 

 

%component

72.5Ni

19.5Cr

5.0Fe

0.4Ti

1.0Si

1.0Mn

0.6Cu

ρ =

100

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

g

 

 

 

xi

=

----------------------------------------------------------------------------------------------------------------

=

8.18

---------

 

 

72.5

+

19.5

+

 

5.0

+

0.4

+

1

+

1

+

0.6

cm

3

 

----

 

---------

 

---------

---------

 

 

---------

---------

---------

---------

 

 

 

 

 

 

ρ i

 

8.9

 

7.19

 

 

7.86

 

4.51

 

2.33

 

7.43

 

8.96

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1035× 10

–2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q =

 

8.18------------------------------

 

----------------------------------------------------------------------------------------------------------------------------------------------------

 

 

 

 

( 72.5) 2

 

 

( 19.5) 2

( 5) 2

 

( 0.4) 3

( 1) 4

 

( 1) 2

 

( 0.6) 1

 

 

 

 

 

 

------------------

58.71

 

+

------------------51.99 + 55.85------------

+

---------------47.9

+ 28.09------------

+

54.94------------ +

--------------63.57

Q =

0.35× 10

–4 cm3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A sec

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

therefore, for 1 min, and 1000A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0.35× 10

–4

( 1000) ( 60)

 

 

cm3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

---------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2.1 min

 

 

 

 

 

 

 

 

While the current required is related to the metal removed, the voltage required depends upon,

-electrode potential.

-the current flow in and about the electrodes will disturb the normal distribution of voltage. Extra potential is required to overcome the effects.

-Ion collect near electrodes and impede ion transfer from the electrode to the electrolyte, also adding a potential.

-Some solid film forms on the surface of the electrode, also increasing resistance.

-electrolyte resistance,

I

=

V V

----------------

1

 

R

=

10 1( Ω cm)

--

R

 

 

page 383

required V

 

 

 

anode potential

 

 

activation polarization overvoltage

 

 

ohmic overvoltage

 

 

concentration polarization overvoltage

 

 

electrolyte ohmic voltage

cathode

 

 

anode

concentration polarization overvoltage

 

 

 

ohmic overvoltage

 

activation polarization overvoltage

 

 

cathode potential

 

 

distance

• The feed of the electrodes has the following effects

+

-

 

tool

 

v

 

y

 

work

dy

=

 

KA( V V)

 

1

v

 

 

-----

 

-----------------------------ρ ZF

 

--

dt

 

 

 

y

 

K = conductivity of electrolyte( Ω –1)

page 384

y(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for electrode velocity v = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y0

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

gap

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y0 = 4

 

 

For electrode starting above/below equilibrium

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electrode gap - eventually the electrode approaches

3

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

the equilibrium gap.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

 

 

 

 

 

6

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The ECM process will erode material in a radial direction, so care must be made in tooling design.

Produces

As current flows through the electrolyte, it is heated, and conductivity decreases.

Surface finish is affected by,

-selective dissolution

-sporadic breakdown of the anodic film