Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
227
Добавлен:
03.10.2013
Размер:
108.54 Кб
Скачать

Структура и состав катализаторов

Промышленные катализаторы очень часто представляют собой многокомпонентные системы. Компоненты катализатора могут находиться в различных формах: в виде элементарных соединений (металлы, угли), оксидов, сульфидов, галогенидов, а также сложных комплексных соединений (ферменты, комплексы металлов с органическими лигандами). Сложность состава катализаторов обусловлена тем, что каталитическая активность двух или нескольких соединений не аддитивна, а принимает экстремальное значение, так называемый «синергетический эффект». Одним из способов увеличения активности катализатора является его промотирование - добавление к катализатору вещества (промотора), которое само по себе не обладает каталитическими свойствами, но увеличивает активность катализатора. Различают два типа промоторов: электронные и структурные.

Электронные промоторы

Механизм их действия сводится к изменению электронных состояний в кристаллах катализатора и снижению работы выхода электрона. Электронные промоторы изменяют строение и химический состав активной фазы, образуя на поверхности катализатора активные центры новой химической природы, в связи с чем изменяется характер и скорость элементарных стадий каталитических процессов, а иногда и изменение селективности. Например, добавление К2О к катализатору синтеза аммиака способствует десорбции аммиака, что приводи к повышению удельной каталитической активности катализатора.

Структурные промоторы

Они стабилизируют активную фазу катализатора по отношению к спеканию, механическим или химическим разрушениям. Например, оксид алюминия при добавлении к железному катализатору синтеза аммиака взаимодействует с Fe3O4 образуя кристаллическую решетку шпинели FeAl2O4 тем самым препятствуя процессу рекристаллизации. Кроме того, добавление 8-10% Al2O3 приводит к увеличение удельной поверхности железного катализатора от 1 до 25-30 м2/г. Следует отметить, что в зависимости от количества промотора, он может оказывать как промотирующее, так и отравляющее действие на катализатор.

Большинство адсорбентов и катализаторов по характеру макроструктуры можно разделить на два типа: губчатые и ксерогели. Губчатые катализаторы представляют собой сплошное твердое тело, пронизанное конусными, цилиндрическими и бутылкообразными порами, образовавшимися при выделении из этого тела летучих или растворимых продуктов в результате сушки или обработки агрессивными жидкостями и газами (выщелачивание, восстановление, обжиг). Пористая структура ксерогелей описывается глобулярной моделью, согласно которой твердое вещество состоит из соприкасающихся или сросшихся частиц, поры представляют собой пустоты между ними. В зависимости от метода получения катализаторы бывают смешанные и нанесенные.

Смешанные катализаторы

В смешанных катализаторах компоненты вводятся в соизмеримых количествах и каждый из них является каталитически активным в отношении данной реакции. Смешанные катализаторы получают либо механическим смешением активных компонентов с последующей термообработкой или без нее, либо соосаждением полупродуктов с последующим прокаливанием, например при использовании оксидов в качестве катализаторов. Повышение активности смешанного катализатора может быть связано с тем, что в процессе его получения компонеты реагируют друг с другом с образованием нового, более активного соединения. Например, железомолибденовый катализатор окисления метилового спирта в формальдегид представляет собой молибдат железа, получаемый при соотношении оксидов молибдена и железа в соотношении 1,5 : 1. Катализатор, содержащий другое сооношение оксидо будет менее активным вследствие существования двух фаз: молибдата железа и избытка оксидов МоО3 и Fe2O3. Повышение активности может быть следствием образования твердого раствора одного компонента в другом или их сплава. Например, введение оксида циркония в оксид церия, являющийся катализатором окисления сажи, приводит к улучшению термической устойчивости катализатора и возрастанию активности за счет увеличения подвижности кислорода решетки.

Катализаторы на носителях являются наиболее распространенным типом сложных контактных масс. В них активная составляющая наносится тем или иным способом (пропиткой, напылением и др.) на пористую подложку – носитель. Чаще всего носитель инертен для данного процесса и составляет в отличие от промоторов большую его часть, однако нередко используются носители, которые обладают каталитическими свойствами в проводимых процессах. За счет применения носителя увеличивают рабочую поверхность катализатора и уменьшают его стоимость. Носитель должен обладать следующими свойствами: высокой температурой плавления, термостойкостью, прочностью, развитой пористой структурой, удельной поверхностью более 100 м2/г. В некоторых случаях носитель взаимодействует с активным компонентом, повышая его активность. Наиболее распространенными носителями являются: цеолиты, оксиды алюминия, кремния, титана, угли.

Необходимый состав контактной массы в значительной степени определяется условиями протекания каталитического процесса, составом исходной смеси, в частности влажностью, наличием посторонних инертных или ядовитых примесей, температурой и гидродинамикой процесса.