Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
227
Добавлен:
03.10.2013
Размер:
108.54 Кб
Скачать

Свойства катализаторов:

1. Активность катализаторов

В качестве меры активности применяют разность скоростей химической реакции в присутствие катализатора и без него с учетом доли реакционного пространства, занимаемого катализаторо и недоступного для реагирующих веществ:

А1 = кат -  (1-кат) (14)

это выражение может применяться только при постоянной движущей силе процесса с.

Более удобно применять в качестве меры активности катализатора отношение канстант скоростей каталитического и некаталитического процессов:

А2 = kкат/ k = k0 кат e-Ea кат/RT/ k0 e-Ea/RT = (k0 кат /k0) e-Ea/RT (15)

Активные катализаторы обеспечивают высокую интенсивность процесса (значительную степень превращения при высоких объемных скоростях потока). Активность характеризуется константой скорости реакции, зависящей от удельной каталитической активности kуд (на 1 м2 поверхности), которая отражает химическую природу катализатора, внутренней удельной поверхности катализатора Sуд2/г) и степени ее использования :

k = kуд Sуд  (16)

Для сравнения активности катализатора в какой-либо реакции при различных условиях, либо для сравнения нескольких катализаторов в качестве меры активности используют отношение количества продукта, получаемого за 1 час работы единицы объема катализатора

А = G/ V (17)

2. Селективность (избирательность)

Селективность действия катализатора может характеризоваться как отношение скорости образования целевого продукта к суммарной скорости превращения основного реагирующего вещества по всем направлениям (из дифференциальных данных кинетики), либо как отношение количества основного вещества, превратившегося в целевой продукт, к общему его количеству, вступившему во все реакции (из интегральных кинетических данных). Высокие значения избирательности достигаются применением катализаторов определенного химического состава и пористой структуры, обеспечением оптимальных форм и размеров зерен, а также гидродинамическим режимом в реакторе. Так, из смеси СО и Н2 (водяной газ) в зависимости от катализатора и условий синтеза могут образовываться различные продукты. Над металлическим никелем при температуре образуется метан, на меди при повышенном давлении образуется метиловый спирт.

3. Механическая прочность

Прочность катализатора и их активность часто находятся в обратно пропорциональной зависимости. Приемлемым способом повышения прочности катализаторов является применение различных связующих (неорганические клеи), не оказывающие отрицательного влияния на их активность.

4. Термостойкость

Устойчивость катализаторов к перегревам имеет значение для высокотемпературных процессов. В процессе термической рекристаллизации катализатора либо его носителя удельная поверхность, а значит, и активность снижаются. Обычно катализатор характеризуют максимальной температурой, при которой длительное время сохраняется его активность, либо приводят значение относительной потери активности при эксплуатации в более жестких условиях.

5. Удельная поверхность

Удельная поверхность различных катализаторов колеблется от нескольких метров квадратных на грамм до сотен. Удельная поверхность катализатора определяется, с одной стороны, размером частиц вещества, с другой стороны, его пористостью. Для катализа наиболее предпочтительны переходные поры, поскольку именно они вносят основной вклад в величину удельной поверхности. В микропористых материалах затруднена диффузия реагентов к поверхности катализатора и продуктов реакции от нее. Высокой активность обладают катализаторы, имеющие бидисперсную (бипористую) структуру, когда крупные глобулы, между которыми образуются транспортные поры, в свою очередь, образованы из мелких глобул, создающих высокую удельную поверхность. Для повышения активности катализатора целесообразно применение более мелких зерен, что дает возможность повысить степень использования зерна.