Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika.doc
Скачиваний:
254
Добавлен:
13.02.2016
Размер:
971.26 Кб
Скачать

13. Кольца Ньютона. Применение явления интерференции. Интерферометры. Просветление оптики.

Классическим примером полос равной толщины являются кольца Ньютона, Они наблюдаются при отражении света от соприкасающихся др. с др. плоскопараллельной толстой стеклянной пластинки и плоско-выпуклой линзы с большим радиусом кривизны (рис.7).

Рис.7.

Роль тонкой пленки, от поверхности которой отражаются когерентные волны, играет воздушный зазор между пластинкой и линзой (вследствие большой толщины пластинки и линзы за счет отражений от других поверхностей интерференционные полосы не возникают). При нормальном падении света полосы равной толщины имеют вид концентрических окружностей, при наклонном падении - эллипсов. Найдем радиусы колец Ньютона, получающиеся при нормальном падении света на пластину. В этом случае sinQ1 = О и D равна удвоенной толщине зазора (предполагается n0 = 1). Из рис. 7 следует, что

R2 = (R – b)2 + r2 » R2 – 2Rb + r2, (12)

где R - радиус кривизны линзы, r - радиус окружности, всем точкам которой соответствует одинаковый зазор b. Считаем b2 < 2Rb. Из (12) b = г2/2R. Чтобы учесть возникающее при отражении от пластинки изменение фазы на p, нужно к D = 2b = r2/R прибавить lо/2. В результате получится

D = r2/R + lо/2. (13)

В точках, для которых

D = m'lо = 2m'(lо/2), (а)

возникают максимумы, в точках, для которых

D = (m' + 1/2)lо = (2m'+ 1)(lо/2), (б)

- минимумы интенсивности.

Оба условия можно объединить в одно:

D = mlо/2,

причем четным значениям m будут соответствовать максимумы, а нечетным -минимумы интенсивности. Подставив сюда (13) и разрешив получившееся уравнение относительно r, найдем радиусы светлых и темных колец Ньютона:

rm = ÖRlо(m- 1)/2, (m =1,2,3,...). (14)

Четным m соответствуют радиусы светлых колец, нечетным m - радиусы темных колей. Значению m =1 соответствует г = 0, в этой точке наблюдается минимум интенсивности, обусловленный изменением фазы на p при отражении световой волны от пластинки.

Измеряя расстояния между полосами интерференционной картины для тонких пластин или радиусы колец Ньютона, можно определить длины волн световых лучей и, наоборот, по известной l найти радиус кривизны линзы.

Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на l0/2, т.е. максимумам интерференции в отраженном свете соответствуют минимумы в проходящем, и наоборот.

Другим практическим применением интерференции являются прецизионные измерения линейных размеров. Для этого служат приборы, называемые интерферометрами.

Интерферометры также позволяют определять незначительные изменения показателя преломления прозрачных тел (газов, жидкостей и твердых тел) в зависимости от давления, температуры, примесей и т.п. Оптические схемы интерферометров и просветление оптики рассмотрим на практических занятиях.