Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электротехника.docx
Скачиваний:
121
Добавлен:
21.02.2016
Размер:
78.25 Кб
Скачать

10. Способы соединение источников электрической энергии.

В тех случаях, когда номинальное напряжение или номинальный ток и мощность источника электрической энергии оказываются недостаточными для питания приемников, вместо одного используют два или больше источников. Существуют два основных способа соединения источников: последовательное и параллельное.

Последовательное соединение (рис. 1.18) осуществляется обычно таким образом, чтобы ЭДС источников были направлены в одну сторону. Характерным для последовательного соединения является один и тот же ток I всех источников, на который каждый их них должен быть рассчитан.

По второму закону Кирхгофа

(5)

Соединяя источники последовательно, можно получить более высокое напряжение U на выходных выводах а и b, для чего и используется данный способ соединения.

Электрическая цепь рис. 1.18 может быть заменена цепью с эквивалентным генератором, имеющим параметры Еэ и r0э (рис. 1,19). Согласно методу эквивалентного генератора ЭДС Еэ при холостом ходе (r = ∞, I = 0) должна быть равна напряжению холостого хода, Еэ = Ux. Учитывая это, на основании второго закона Кирхгофа для цепи рис. 1.18 получим

(5.1)

При параллельном соединении источников (рис. 1.20) соединяются между собой положительные выводы всех источников, а также их отрицательные выводы. Характерным для параллельного соединения является одно и то же напряжение U на выводах всех источников. Для электрической цепи рис 1.20 можно написать следующие уравнения:

(5.2)

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания приемников. На параллельную работу включают обычно источники с одинаковыми ЭДС, мощностями и внутренними сопротивлениями. Используя метод узлового напряжения, нетрудно показать, что в этом случае при отключенной внешней цепи токи источников будут равны нулю, а при подключенной внешней цепи они будут одинаковыми.

11. Собственная электронная и дырочная электропроводность

Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости занимают среднее место между проводниками и диэлектриками.

Для полупроводников

характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того, электрическое сопротивление полупроводников очень сильно зависит от количества примесей, а также от таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и др.

В полупроводниках существует электропроводность двух видов. Так же как и металлы, полупроводники обладают электронной электропроводностью, которая обусловлена перемещением электронов проводимости. При обычных рабочих температурах в полупроводниках всегда имеются электроны проводимости, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение между атомами кристаллической решетки. Эти электроны под действием разности потенциалов могут получить дополнительное движение в определенном направлении, которое и является электрическим током.

Полупроводники обладают также дырочной электропроводностью, которая не наблюдается в металлах. В полупроводниках кристаллическая решетка достаточно прочна. Ее ионы, т. е. атомы, лишенные одного электрона, не передвигаются, а остаются на своих местах.

Отсутствие электрона в атоме условно назвали дыркой.

Этим подчеркивают, что в атоме не хватает одного электрона, т. е. образовалось свободное место. Дырки ведут себя как элементарные положительные заряды.

При дырочной электропроводности в действительности тоже перемещаются электроны, но более ограниченно, чем при электронной электропроводности. Электроны переходят из данных атомов только в соседние. Результатом этого является перемещение положительных зарядов – дырок – в направлении, противоположном движению электронов.

Электроны и дырки, которые могут перемещаться и поэтому создавать электропроводность, называют подвижными носителями заряда

или просто носителями заряда.

Принято говорить, что под действием теплоты происходит генерация пар носителей заряда, т. е. возникают пары: электрон проводимости – дырка проводимости.

Вследствие того что электроны и дырки проводимости совершают хаотическое тепловое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне, т. е. объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда.

Процессы генерации и рекомбинации пар носителей всегда происходят одновременно.

Полупроводник без примесей называют собственным полупроводником. Он обладает собственной электропроводностью, которая складывается из электронной и дырочной электропроводности. При этом, несмотря на то что количество электронов и дырок проводимости в собственном полупроводнике одинаково, электронная электропроводность преобладает, что объясняется большей подвижностью электронов по сравнению с подвижностью дырок.