Скачиваний:
365
Добавлен:
08.01.2014
Размер:
4.95 Mб
Скачать

Количество тепла в ккал, выделяющееся при сгорании 1 см3 некоторых горючих (q4)

Символ

Q4

Символ

Q4

Символ

Q4

Символ

Q4

Be

29

Zr

18

Nb

21

Та

23

Al

20

B

33

Мо

19

Zn

9

Mg

10

Si

18

Fe

14

W

21

Ca

6

P белый

11

Mn

12

Ni

9

Ti

20

Се

11

Примечание. 1 ккал=4,186 кДж.

По объемной калорийности первое место занимает бор (при расчете использована плотность 2,3 г/см3), а тяжелые металлы Zr,Nb, Мо, Та и W имеют объемную калорийность, сравнимую с алюминием и значительно большую, чем у магния.

Объемная калорийность смесей горючее — окислитель, конечно, гораздо меньше, чем объемная калорийность горючих в отдельности. Из всех стехиометрических смесей наибольшую калорийность имеет смесь Be—LiC104 (см. приложение 3).

В табл. 3.3 приведены физико-химические свойства горючих и их оксидов.

Температура воспламенения порошков металлов в очень большой степени зависит от размеров и формы частиц, а также качества покрывающей эти частицы оксидной пленки. Чем выше дисперсность порошка металла, тем ниже температура воспламенения.

Так, температура воспламенения порошка титана может варьировать в пределах 300-600° С, а некоторые образчики мелкодисперсного порошка циркония могут воспламеняться при комнатной температуре.

Увлажненный порошок циркония горит интенсивнее, чем сухой (система 2Н2О+Zr способна к горению и взрыву), а тушение горящего циркония допустимо только засыпкой порошкообразными СаF2 или СаО, так как Н20, ССl2, СО2 и даже СаСОз энергично реагируют с цирконием.

Известно, что при работе с тонкодисперсным порошком циркония (2-5 мкм) имели место несчастные случаи.

Отмечено, что температура воспламенения тонкодисперсного порошка циркония около 85° С. Он перевозится и, поскольку возможно, обрабатывается под водой.

Грубые фракции Zr-порошков имеют температуру воспламенения порядка 180—200° С.

Zr-порошок с размером частиц 10 мкм и более расценивается как малоопасный в обращении.

Наибольшего количества кислорода для окисления требуют водород и затем углерод при сгорании в СО2 (см. табл. 3.3). Отсюда следует, что составы, горючими в которых являются органические вещества, должны содержать в себе много окислителя и соответственно мало горючего.

Одним из основных факторов, определяющих химическую устойчивость металлов, является их стандартный электродный потенциал. Эти данные указаны в табл. 2.4.

Возможность окисления металлов газообразным кислородом при наличии трудноиспаряющегося оксида определяется качеством покрывающей металл оксидной пленки.

Согласно общеизвестному правилу Пиллинга и Бэдворса, если объем образующегося оксида меньше объема замещаемого им металла, то пленка оксида имеет рыхлую, ячеистую структуру и не может надежно защитить металл от дальнейшего окисления.

Если же отношение объема оксида к объему металла больше единицы, то образующаяся пленка имеет компактную, сплошную структуру, надежно изолирует металл от воздействия газообразного кислорода и, следовательно, препятствует дальнейшему окислению металла.

Коэффициент а Пиллинга и Бэдворса (см. табл. 3.4) вычисляется по формуле

MokDme

------------------

DokAmen...............=a

где Mok и Dok—молекулярный вес и плотность оксида;

Ame и Dme— атомный вес и плотность металла;

п —число атомов металла в формуле оксида.

Таблица 3.4 Отношение объема оксида к объему металла (а)

Na

0,55

А1

1,45

Си

1,70

К

0,45

Pb

1,31

Ti

1,73

Li

0,58

Cd

1,32

Fe

2,06

Sr

0,69

Sn

1,33

Mn

2,07

Ва

0,78

Zr

1,45

Co

2,10

Са

0,64

Zn

1,59

Cr

3,92

Mg

0,81

Ni

1,68

Si

2,04

Как видно из табл. 3.4, для легких металлов: щелочных, щелочноземельных и магния а<1, для тяжелых металлов и алюминия а>1.

Значение а определяет поведение металлов при высокотемпературной коррозии: если а<1, то металл легко и быстро коррозирует.

Именно малое значение а для магния является одной из причин, определяющих большую скорость горения магниевых составов.

Вместе с тем известно, что при очень больших значениях а оксидный слой получает значительные внутренние напряжения, растрескивается и теряет защитные свойства, поэтому наибольшими защитными свойствами обладают оксидные пленки, для которых а не очень значительно превышает 1.

Наиболее важны для пиротехников свойства двух металлов: магния и алюминия.

Магний. Теплота плавления и кипения его равны соответственно 2,1 и 30,5 ккал (8,8 и 128 кДж) г-атом (температуру плавления и кипения см. в табл. 3.3). Атомная теплоемкость для твердого и жидкого магния меняется с изменением температуры в пределах от 5,9 до 8,1 кал/г-атом (от 24 до 34 Дж/г-атом). Теплопроводность при 20° С 0,37 кал/(см-с-град) 1,55 Дж/(смХ Хс-гоал). Давление насыщенного паша в мм DT- сг- 1 ппи

662°'С, 20 при 750° С, 100 при 909° С (соответственно 130, 2600 и 13000Н/М2).

Химически магний весьма активен, но примерно до 350° С от окисления его в известной мере защищает оксидная пленка. При нагревании до более высокой температуры окисление магния ускоряется. Магний в виде крупных кусков и пластинок воспламеняется на воздухе при 600—650° С, порошкообразный — при температуре около 550C.При сгорании на воздухе магний образует оксид магния MgO и частично нитрид Mg3N2.

Известно, что добавление к воздуху 1 % по объему SiF4или ВFз достаточно, чтобы потушить пламя горящего магния.

Оксид магния (MgO) — легкий белый порошок (плотность 3,6 г/см3); сильно прокаленный оксид магния теряет способность соединяться с водой и растворяться в кислотах.

Летучесть MgO заметна при температуре около 2000° С; температура его плавления — около 2800° С. Большинство приводимых в литературе значений для температуры кипения MgO лежит в пределах 3000—3600° С. Следует полагать, что температура кипения MgO 'во всяком случае не ниже, чем 3100° С.. Скрытая теплота сублимации MgO оценивается величиной 150ккал/моль (627 кДж/моль).

Нитрид магния Mg3N2 — твердое вещество серо-зеленого цвета, легко разлагаемое водой: соединение магния с азотом сопровождается значительно меньшим выделением тепла, чем соединение его с кислородом.

Алюминий. Теплота плавления и кипения его равны соответственно 2,5 и 69,6 ккал/г-атом (10,5 и 293 кДж/г-атом). Атомная теплоемкость изменяется с .изменением температуры от 0 до 1000° в пределах от 6,0 до 7,4 ккал/(г-атом-град) или от 25,1 до 30,9 Дж/(г-атом-град). Давление жара в мм рт. ст. (в скобках Н/м2): 2-Ю-5 (0,003) при 660° С; 1 (130) при 1284° С; 20 (2600) при 1555° С и 100 (13000) при 1749° С. Теплопроводность при 20° С—0,52 кал/(см-с-град), или 2,17 Дж/(см-с-град).

Алюминий химически активен, но в обычных условиях (в том числе и в порошкообразном состоянии) окислению его препятствует тонкая, но прочная оксидная пленка. При накаливании порошкообразный алюминий энергично сгорает на воздухе. При температуре красного каления он активно соединяется с серой, образуя AlaSs. При 800° С алюминий соединяется с азотом, образуя нитрид A1N - белые кристаллы с температурой плавления 2200° С (при давлении азота 0,4 МН/м2).

В своих соединениях алюминий трехвалентен, но при высоких температурах существуют соединения и одновалентного алюминия.

Оксид алюминия - белый порошок, имеющий плотность: корунд (а-А12О3) 3,96, глинозем (у-Аl2О3) 3,42 г/см3. Зависимость молярной теплоемкости в.интервале 100-1400° С от температуры для А120з выражается формулой: Ср = 23,9 + 0,0067t.

Температура плавления Al2O3 2050° С. При высокой температуре (выше 2000° С) Аl2Oз в значительной степени диссоциирует с отщеплением кислорода, образуя низшие окислы — А1O, и в восстановительной атмосфере Аl2О, так что указываемая в справочниках температура кипения Аl2Оз является весьма условной.

Сплавы металлов. Из них следует особо указать на магниевоалюминиевые сплавы на рис. 3. 2.

Интерметаллическое соединение Mg4Al3 (54 вес. % магния) имеет теплоту образования + 49 ккал/моль (205 кДж/моль); плотность его 2,15, температура плавления 463°С. Этот сплав выгодно отличается от соответствующих смесей магния с алюминием меньшей способностью к коррозии.

Рис. 3.2. Диаграмма состояния сплавов магний — алюминий обладает большой хрупкостью, что дает возможность легко осуществить процесс его измельчения.

В США для снаряжения фотобомб используется сплав Mg— А1 70/30,

Сплавы магния с алюминием, содержащие 85—90 % магния, получили название «электрон».