Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ответы к билетам матан 1 семестр docx - 2010 / 44.Интегральный признак Коши

.docx
Скачиваний:
266
Добавлен:
08.01.2014
Размер:
22.18 Кб
Скачать

Теорема 8. (Интегральный признак Коши)

Пусть члены знакоположительного числового ряда u1+u2+…+un (7) не возрастают: u1u2≥…≥un≥… и пусть f(x) такая положительная, непрерывная, невозрастающая на промежутке [1;∞) функция, что f(1)=u1, f(2)= u2 ,…,        f(n)= =un,… . Тогда ряд (7) сходится или расходится одновременно с несобственным интегралом

Доказательство. Построим график функции y=f(x) на отрезке [1;n] и построим прямоугольник с основаниями [1;2], [2;3], …, [n-1;n] и высотами u1,u2,…,un-1, а также с высотами u2,u3,…,un.

Sn=u1+u2+…+un-1+un, Sвпис=u2.1+u3.1+…+un.1=u2+u3+…+un=Sn-u1,

Sопис=u1+u2+…+ +un-1=Sn-un.

Площадь криволинейной трапеции S= . Получаем Sn-u1< < Sn-un. Отсюда

Sn<u1+          (17)

и Sn>un+       (18)

Пусть  сходится. Это означает, что существует конечный предел =Y. Соотношение (17) принимает вид: Sn<u1+Y при любом n. Это означает, что последовательность частичных сумм Sn ряда (7) ограничена и, следовательно, ряд (7) сходится. Пусть  расходится. Это означает, что = и тогда из (18) следует, что последовательность частичных сумм Sn ряда (7) неограничена и, следовательно, ряд (7) расходится. Теорема доказана.

2