Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
геометрические интегралы.doc
Скачиваний:
19
Добавлен:
14.03.2016
Размер:
2.59 Mб
Скачать

§2. Вычисление объёмов тел.

1.Кубируемые тела. В этом параграфе рассмотрим вопрос о вычислении объёмов тел. Начнём с простейших тел – прямоугольных параллелепипедов.

Выберем в пространстве прямоугольную декартовую систему координат Oxyz. Пусть А – допустимый прямоугольный параллелепипед (параллелепипед, стороны которого параллельны осям координат), длины рёбер которого равны а, в, с. Назовём числоа в с объёмом этого параллелепипеда и обозначим егоV(А),V(А) =а в с. Очевидно, что если параллелепипед А разделён плоскостью, параллельной одной из координатных плоскостей, на параллелепипеды В и С, то выполняется равенство

V(А) =V(В) +V(С).

Далее, если параллелепипед А' получается из параллелепипеда А параллельным переносом, то V(А') =V(А). Наконец, объём куба с длиной ребра 1 равен 1.

Мы хотим распространить понятие объёма на более широкий класс тел, чем класс допустимых параллелепипедов. Назовём ступенчатым любое тело L, которое можно представить в виде объединения конечного числа таких параллелепипедов, никакие два из которых не имеют общих внутренних точек.

Пусть L=Fj– разложение ступенчатого тела на такие параллелепипеды. Положим по определению, что

V(L) =V (Fj).

Это определение не зависит от того, каким способом тело Lразложено на параллелепипеды.

Возьмём теперь любое тело Т. Обозначим через ХТ числовое множество, состоящее из объёмов ступенчатых тел, целиком содержащихся в Т, а через УТ– множество объёмов ступенчатых тел, содержащих Т:

ХТ = {Vвнутренних ступенчатых тел },

УТ = {Vвнешних ступенчатых тел }.

Тогда числовое множество ХТ лежит левее числового множества УТ. В самом деле, еслих ХТ иу УТ, тох=V(L1),у=V(L2), гдеL1ТL2. Так как ступенчатое телоL1– часть ступенчатого телаL2, тоV(L1)V(L2), а это и значит, чтох у.

Поскольку ХТ лежит левее УТ, то найдётся хотя бы одно число, разделяющее эти множества. Если ХТ и УТ разделяются лишь одним числом, то тело Т называют кубируемым, а число, разделяющее множества ХТ и УТ – объёмом этого тела. Его обозначаютV(Т).

Итак, объёмом кубируемого тела называют единственное число, разделяющее множество ступенчатых тел, содержащихся в Т, и множество объёмов ступенчатых тел, содержащих Т.

Применяя необходимое и достаточное условие единственности разделяющего числа, получим следующее необходимое и достаточное условие кубируемости тела:

Для того, чтобы тело т было кубируемым, необходимо и достаточно, чтобы для любого > 0 нашлись ступенчатые телаL1иL2такие, чтоL1ТL2 иV(L1) –V(L2) <.

Объём тел обладает свойством аддитивности:

Если Т1 и Т2 – кубируемые тела, не имеющие общих внутренних точек, то их объединение Т = Т1Т2также кубируемо, причём выполняется равенство

V(Т) =V(Т1) +V(Т2).

Мы опускаем доказательство этого утверждения, поскольку оно проводится так же, как и для площадей. Отметим только, что внутренней точкой тела Т называется всякая точка, которая принадлежит телу Т вместе с некоторой своей окрестностью (т.е. открытым шаром с центром данной точке).

Далее очевидно, что если тело Т кубируемо, а тело Т1получается из Т параллельным переносом, то тело Т1 также кубируемо, причёмV(Т) =V(Т1). Можно доказать, что справедливо более общее утверждение: если тело Т1конгруэнтно кубируемому телу Т, то Т1кубируемо иV(Т) =V(Т1).

Понятие объёма можно определить и аксиоматически теми же требованиями 1°–4°, что и площадь. Разница состоит лишь в том, что иначе понимается условие отсутствия общих внутренних точек ( окрестности берутся не на плоскости, а в пространстве) и иначе выглядит условия нормировки.

Мы будем использовать в дальнейшем достаточное условие кубируемости тела.

Если для любого > 0 найдутся такие кубируемые тела Т1и Т2, что Т1ТТ2, причёмV(T2) –V(T1) <, то тело Т кубируемо.