Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература БФХ / molekuljarnaja biologija kletki v3

.pdf
Скачиваний:
105
Добавлен:
10.02.2017
Размер:
24.19 Mб
Скачать

171

Рис. 17-20. Строение эпидермиса средней толщины у млекопитающего (схема) (см. также рис. 17-1). Зернистые (гранулярные) клетки находятся между шиповатыми клетками и уплощенными чешуйками. Они проходят предпоследнюю стадию ороговения и содержат интенсивно окрашивающиеся гранулы малоизученного материала - кератогиалина, участвующего в уплотнении и перекрестном сшивании кератина внутри клетки. Кератогиалин в основном состоит из белка филаггрина. Кроме клеток, которым предстоит ороговение, в глубоких слоях эпидермиса находится небольшое число клеток совсем иного типа (на схеме не показанных): это макрофагоподобные клетки Лангерганса, происходящие из костного мозга; меланоциты, происходящие из нервного гребня; клетки Меркеля, связанные с нервными окончаниями в эпидермисе.

с поперечными сшивками, содержащим внутриклеточный белок инволюкрин. Сами чешуйки обычно настолько уплощены, что границы их в световом микроскопе почти неразличимы; но если выдержать препарат в растворе NaOH, эти клетки несколько набухнут, и тогда после надлежащей окраски можно увидеть (если эпидермис в данном участке тонкий) удивительно правильную геометрическую картину расположения клеток: чешуйки уложены здесь гексагональными колонками, которые аккуратно сцеплены между собой краями клеток (рис. 17-22). Ширина колонок такова, что под каждой из них, в ее основании, находится около десятка базальных клеток. Эти клетки можно подразделить на центральные и периферические в соответствии с их положением в основании колонки. Периферические (но не центральные!) клетки

Рис. 17-21. Рисунок, сделанный по электронной микрофотографии среза шиповатой клетки эпидермиса (выделена цветом). Видны пучки кератиновых нитей, которые пронизывают цитоплазму и направляются к десмосомам, соединяющим клетку с ее соседями. Обратите внимание, что между соседними клетками есть открытые каналы, позволяющие питательным веществам свободно диффундировать через метаболически активные слои зпидермиса. Ближе к его поверхности, на уровне зернистых клеток, имеется водонепроницаемый барьер, образованный, повидимому, изолирующим веществом, который эти клетки выделяют из особых пузырьков. (R. V. Krstic, Ultrastruture of the Mammalian Cell: An Mas. Berlin: Springer, 1979.)

172

Рис. 17-22. Пролиферативные единицы, или колонки, в эпидермисе тонкой кожи. Эта структура выявляется при набухании ороговевших чешуек в растворе, содержащем NaOH. Такая организация в виде колонок свойственна лишь тонким участкам эпидермиса.

иногда можно видеть в тот момент, когда они переходят из базального слоя наверх, в слой шиповатых клеток. Каждую колонку называют пролиферативной единицей эпидермиса. Хотя упорядоченная организация в виде правильных колонок выявляется только в некоторых участках кожи, она служит хорошей иллюстрацией общих принципов обновления эпидермальных клеток.

17.4.3. В дифференцирующихся эпидермальных клетках по мере их созревания последовательно синтезируются различные кератины [19]

Перейдем от описанной статической картины к динамике. Центральная базальная клетка колонки делится, и некоторые из дочерних клеток, в свою очередь поделившись, сдвигаются к периферии основания. Периферические базальные клетки переходят из базального слоя в слой шиповатых клеток - на первую ступень движущегося вверх «эскалатора». Достигнув зернистого слоя, шиповатые клетки начинают терять свои ядра

ицитоплазматические органеллы и постепенно превращаются в ороговевшие чешуйки наружного слоя. В конце концов эти чешуйки отслаиваются

иразносятся токами воздуха, образуя один из главных компонентов комнатной пыли. У человека промежуток времени от момента рождения клетки в базальном слое эпидермиса до ее слущивания с поверхности кожи занимает от двух до четырех недель в зависимости от участка тела.

Сопутствующие химические изменения можно изучать, анализируя тонкие слои эпидермиса, срезанные параллельно поверхности, или последовательные слои клеток, обдираемые при повторном наложении и снятии кусков липкой ленты. При этом можно экстрагировать и охарактеризовать молекулы кератина, которых очень много во всех слоях эпидермиса. Существует множество различных видов кератина (разд. 11.5.1), кодируемых большим семейством гомологичных генов: благодаря меняющемуся прецессингу их транскриптов разнообразие кератинов еще больше возрастает. По мере того как стволовая клетка. находившаяся в основании колонки, превращается в чешуйку наверху

173

Рис. 17-23. Каждая пролиферативная единица должна всегда содержать по меньшей мере одну «бессмертную» стволовую клетку, потомки которой будут находиться в этой единице и в отдаленном будущем. Стрелками показано происхождение одних клеток от других. Стволовая клетка в каждой клеточной генерации представлена здесь в центральном положении. Другие базальные клетки могут изначально обладать иными химическими свойствами, которые предопределяют их уход из базального слоя и дифференцировку; в другом варианте базальные клетки будут эквивалентны бессмертным стволовым клеткам по своим свойствам, но их потомство может выталкиваться из базального слоя и слущиваться с кожи, и в этом смысле такие базальные клетки будут смертными.

(рис. 17-22), в ней последовательно экспрессируются различные выборки из всего комплекта гомологичных кератиновых генов. В ходе этого процесса начинают синтезироваться другие характерные белки, такие как инволюкрин, и это тоже входит в координированную программу терминальной дифференцировки клеток.

17.4.4. Возможно, что «бессмертие» стволовой клетки сохраняется благодаря контакту с базальной мембраной [20]

Если каждая пролиферативная единица эпидермиса поддерживается неопределенно долго за счет размножения ее базальных клеток, то среди них должна быть хотя бы одна клетка, потомство которой не вымирает полностью до конца жизни животного. Мы будем называть такую клетку бессмертной стволовой клеткой (рис. 17-23). В принципе деление бессмертной стволовой клетки могло бы давать две первоначально одинаковые дочерние клетки, чья дальнейшая судьба зависела бы уже от последующих условий их жизни. В противоположном крайнем случае деление стволовой клетки могло бы всегда быть асимметричным, так что одна и только одна из дочерних клеток наследовала бы свойства, необходимые для бессмертия; в другой же клетке что-то изменялось бы уже в момент ее образования, и это заставляло бы ее дифференцироваться и обрекало в конце концов на гибель. В таком случае число бессмертных стволовых клеток никогда не могло бы увеличиться, а это противоречит фактам. Если участок эпидермиса разрушен, непрерывность ткани восстанавливают окружающие здоровые эпидермальные клетки, которые мигрируют и размножаются, чтобы закрыть брешь. При этом образуются новые пролиферативные единицы, и их центральные базальные клетки неизбежно должны были возникнуть в результате таких делений, когда из одной бессмертной клетки получаются две.

Таким образом, при делении стволовой клетки судьба дочерних клеток должна хотя бы отчасти зависеть от внешних факторов. Одним из таких факторов мог бы быть контакт с базальной мембраной, разрыв которого приводил бы к запуску терминальной дифференцировки. Эксперименты на тканевых культурах в какой-то мере подтверждают это предположение: эпидермальные клетки продолжают делиться, если они растут в контакте с подходящим субстратом (например, со слоем фибробластов), но сразу начинают дифференцироваться при росте в суспензии.

Однако такого рода регуляция внешними факторами не позволяет объяснить все. Другие данные указывают скорее на обратное направление причинно-следственной связи, т. е. на то, что изменения, ведущие к терминальной дифференцировке, приводят к откреплению клеток от базальной мембраны, а не наоборот. Согласно этой гипотезе, лишь немногие из базальных клеток способны быть стволовыми. Поверхность этих стволовых клеток имеет особые свойства, которые позволяют им прикрепляться к базальной мембране. Эти клетки запрограммированы на то, чтобы давать определенную долю потомства, «обреченную» на дифференцировку, в которую входит и потеря способности к прикреплению. В особых условиях тканевой репарации отношение дифференцирующихся клеток-потомков к пролиферирующим может быть изменено под действием местных ростовых факторов так, чтобы образовались дополнительные клетки для покрытия раны. Данные в пользу этой гипотезы были получены в экспериментах, в которых кератиноциты выращивали in vitro в условиях недостатка кальция; это удерживало их в состоянии монослоя, так что все клетки были базальными. Тем не менее некоторые клетки в этих условиях вступали на путь терминальной

174

дифференцировки, на что указывал синтез инволюкрина; эти дифференцирующиеся клетки выходили из базального слоя, как только повышалась концентрация Са2+ в среде (разд. 14.3.4).

17.4.5. Пролиферация базальных клеток регулируется в соответствии с толщиной эпидермиса [21]

Чем бы ни определялся выбор между сохранением статуса стволовой клетки и переходом на гибельный путь терминальной дифференцировки, должны действовать другие факторы, которые регулировали бы скорость образования новых эпидермальных клеток. Например, если наружные слои эпидермиса соскоблить, то базальные клетки начинают делиться быстрее. Через некоторое время это приводит к восстановлению нормальной толщины эпидермиса, и пролиферация в базальном слое снова снижается до обычного уровня. Все происходит так, как будто удаление наружных дифференцированных слоев освобождает базальные клетки от влияния какого-то ингибирующего фактора, который вновь начинает действовать, как только эпидермис полностью восстанавливается.

Хотя известно, что кератиноциты, растущие в культуре, реагируют на многие гормоны и ростовые факторы, включая фактор роста эпидермиса, очень важный для клиницистов вопрос о молекулярных механизмах, регулирующих пролиферацию этих клеток in vivo, до сих пор не выяснен. Последствия нарушенной регуляции этого процесса можно наблюдать при псориазе. При этом распространенном заболевании кожи пролиферация базальных клеток сильно ускорена, эпидермис утолщен и клетки слущиваются с поверхности кожи уже через неделю после их образования в базальном слое, еще не успев подвергнуться полному ороговению.

17.4.6. Секреторные клетки кожи обособлены в железах, и их популяциям свойственна иная динамика [22]

Кожа служит не только защитным барьером - она выполняет и другие функции. В определенных специализированных участках наряду с описанными выше ороговевшими клетками из эпидермиса развиваются и клетки иных типов. В частности, секреторные клетки обособлены в глубоко лежащих железах, и обновление их происходит совершенно иначе, чем в участках ороговения.

Простейшим примером подобной структуры может служить потовая железа. Она состоит из длинной трубки со слепым концом и образуется как впячивание эпидермиса. Пот выделяют клетки нижней части этой трубки, и он выходит на поверхность кожи через выводной проток (рис. 17-24). Секреторные клетки образуют однослойный эпителий, окруженный небольшим числом сократимых миоэпителиальных клеток (см. рис. 17-25, Б и 17-38, Д). Выводной проток выстлан двуслойным эпителием без миоэпителиальных элементов. Сходным образом устроены и железы, выделяющие слезы, ушную серу, слюну и молоко. По крайней мере в слюнных и молочных железах в протоках имеются стволовые клетки, предназначенные для обновления популяции секреторных клеток.

Молочная железа представляет особый интерес в связи с гормональной регуляцией деления и дифференцировки ее клеток. Образование молока должно начинаться, когда рождается ребенок, и прекращаться, когда ребенка отнимают от груди. Когда молочная железа не функционирует, ее железистая ткань состоит из разветвленных систем выводных протоков, погруженных в соединительную ткань и выстланных в секре-

Рис. 17-24.Схема строения потовой железы.

175

Рис. 17-25. Молочная железа. Вверху слева. Схема образования альвеол из протоков молочной железы во время беременности и лактации. Показан только один небольшой участок железы. В покое железа содержит небольшое количество неактивных железистых элементов, погруженных в массу жировой соединительной ткани (на рисунке - серый фон). Во время беременности происходит сильнейшая пролиферация железистой ткани за счет жировой с преимущественным развитием секреторных отделов железы и образованием альвеол. Вверху справа. Одна из секретирующих молоко альвеол молочной железы и охватывающая ее «корзинка» из миоэпителиальных клеток. Миоэпителиальные клетки сокращаются и выдавливают молоко из альвеол в ответ на воздействие гормона окситоцина, который рефлекторно выделяется у женщины при кормлении грудью. Внизу. Клетки одного и того же типа вырабатывают и молочные белки, и молочный жир. Белки выводятся из клеток путем обычного экзоцитоза, а жир выходит в виде капель, окруженных плазматической мембраной,

отделившейся от клетки. по R. Krstic, Die Gewebe des Menschen und der Säugetiere. Berlin: Springer-Verlag, 1978; В из D. W. Fawcett, A Textbook of Histology, 11 th ed. Philadelphia: Saunders, 1986.)

176

торных участках одним слоем сравнительно неактивных эпителиальных клеток. На первом этапе подготовки к интенсивной выработке молока гормоны, циркулирующие в крови в период беременности, стимулируют здесь клеточную пролиферацию; концевые отделы протоков растут и ветвятся, образуя небольшие расширения - альвеолы, содержащие секреторные клетки (рис. 17-25). Секреция молока начинается только при стимуляции этих клеток изменившимся набором гормонов в крови матери после рождения ребенка. Когда кормление ребенка грудью прекращается, секреторные клетки дегенерируют, макрофаги уничтожают их остатки, большая часть альвеол исчезает и железа переходит в состояние покоя.

Заключение

Многие ткани, особенно те, которым свойственно быстрое замещение клеточной популяции (например, выстилка кишечника, эпидермальный слой кожи, кроветворные ткани), обновляются с помощью стволовых клеток. Стволовые клетки - это, по определению, не до конца дифференцированные клетки, способные неограниченно делиться и давать потомство, часть которого дифференцируется, а часть остается стволовыми клетками. Стволовые клетки эпидермиса лежат в базальном слое, контактируя с базальной мембраной. Потомки стволовых клеток дифференцируются, уходя из этого слоя, и по мере удаления от него последовательно синтезируют различные виды кератинов; затем ядра в клетках дегенерируют, и образуется наружный слой мертвых ороговевших клеток, которые в конце концов слущиваются с поверхности. На тех участках, где эпидермис тонок, он четко подразделяется на пролиферативные единицы, или колонки, по меньшей мере с одной «бессмертной» стволовой клеткой в основании каждой из них. Судьба потомков стволовой клетки отчасти зависит от внешних факторов, еще не вполне выясненных. Скорость пролиферации стволовых клеток регулируется гомеостатически в соответствии с толщиной эпидермиса. В железах, связанных с эпидермисом, например в потовых и молочных железах, тоже имеются стволовые клетки, но обновление клеточной популяции организовано по-иному.

17.5. Обновление с помощью плюрипотентных стволовых клеток. Пример: образование клеток крови [23, 24]

Кровь содержит много типов клеток, выполняющих совершенно различные функции - от транспорта кислорода до выработки антител. Некоторые из этих клеток функционируют исключительно в пределах кровеносной системы, а другие используют ее только для транспорта, а свои функции выполняют в других местах. Однако жизненный цикл всех клеток крови до некоторой степени сходен. У всех у них время существования ограниченно, и они непрерывно образуются в течение всей жизни животного. И наконец, что весьма примечательно, все они восходят к одному и тому же типу стволовых клеток костного мозга. Таким образом, эта гемопоэтическая, или кроветворная, стволовая клетка плюрипотентна, т.е. дает начало всем видам терминально дифференцированных клеток крови.

Клетки крови (рис. 17-26) можно разделить на красные и белые-эритроциты и лейкоциты. Эритроциты остаются в пределах кровеносных сосудов и переносят О2 и СО2, связанные с гемоглобином. Лейкоциты борются с инфекцией, а также поглощают и переваривают остатки

177

Рис. 17-26. Клетки крови млекопитающего в малом кровеносном сосуде (микрофотография, полученная с помощью сканирующего электронного микроскопа). Более крупные, почти шарообразные клетки с шероховатой поверхностью - это лейкоциты, а клетки меньшей величины, более гладкие и уплощенные - эритроциты. (R. G. Kessel, R. H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy. San Francisco: Freeman, 1979.)

разрушенных клеток и т. п., выходя для этого через стенки небольших кровеносных сосудов в ткани. Кроме того, в крови в большом количестве содержатся тромбоциты, представляющие собой не обычные целые клетки, а мелкие клеточные фрагменты, или «мини-клетки», отделившиеся от кортикальной цитоплазмы крупных клеток, называемых мегакариоцитами. Тромбоциты специфически прилипают к эндотелиальной выстилке поврежденных кровеносных сосудов, где помогают восстанавливать их стенку и участвуют в процессе свертывания крови.

17.5.1. Существуют три категории лейкоцитов: гранулоциты, моноциты и лимфоциты [23, 24]

В то время как каждый эритроцит похож на всякий другой эритроцит, а тромбоцит - на другой тромбоцит, лейкоциты делятся на ряд различных классов. На основе морфологических особенностей, видимых в световой микроскоп, их традиционно подразделяют на три главные группы: гранулоциты, моноциты и лимфоциты.

Все гранулоциты содержат многочисленные лизосомы и секреторные пузырьки, или гранулы, и получили свои названия за различный характер окрашивания этих гранул (рис. 17-27). Различие в окрашивании отражает важные химические и функциональные особенности. Нейтрофилы (называемые также полиморфно ядерными лейкоцитами из-за многодольчатых ядер), самые многочисленные из гранулоцитов, захватывают, убивают и переваривают микроскопические организмы, в особенности бактерии. Базофилы выделяют гистамин (а у некоторых животных серотонин), который участвует в воспалительных реакциях. Эозинофилы помогают в разрушении паразитов и влияют на аллергические реакции.

Моноциты, выходя из кровяного русла (рис. 17-27, Г), становятся макрофагами, которые наряду с нейтрофилами являются главными «профессиональными фагоцитами» (разд. 6.5.14). Оба типа фагоцитов содержат специализированные органеллы, которые сливаются с новообразованными фагоцитозными пузырьками (фагосомами) и атакуют поглощенные микроорганизмы с помощью высокореактивных молекул супероксида (О-2) и гипохлорита (НОС1; это действующий компонент отбеливателей), а также концентрированной смеси лизосомных гидролаз. Макрофаги, однако, значительно больше по размерам и дольше живут, чем нейтрофилы, а к тому же обладают уникальной способностью переваривать крупные микроорганизмы, такие как простейшие.

Лимфоциты участвуют в иммунном ответе и представлены двумя главными классами: В-лимфоциты производят антитела, а Т-лимфо-

178

Рис. 17-27. Электронные микрофотографии лейкоцитов четырех типов: А-нейтрофил; Б-базофил; В-эозинофил; Г- моноцит. Электронные микрофотографии лимфоцитов представлены на рис. 18-4. Клетки каждого типа выполняют особую функцию, что отражается в различиях их секреторных гранул и лизосом. В каждой клетке только по одному ядру, но оно имеет неправильную дольчатую форму, так что на фото А, Б и В места соединения долей не попали в плоскость среза. (С любезного разрешения Dorothy Bainton.)

циты убивают клетки, инфицированные вирусом, и регулируют активность других лейкоцитов (см. гл. 18). Кроме того, существуют лимфоцитоподобные клетки, называемые природными киллерами, способные убивать некоторые виды опухолевых и инфицированных вирусом клеток. Образование лимфоцитов - это особая тема, которая будет подробно обсуждаться в гл. 18. Здесь мы будем рассматривать в основном развитие других клеток крови, часто объединяемых под названием миелоидных клеток.

Различные типы кровяных клеток и их функции приведены в табл. 17-1.

179

Таблица 17-1. Клетки крови

 

Тип клетки

Главные функции

Обычное содержание в крови

 

 

 

человека (в 1 л)

 

 

 

Эритроциты Лейкоциты

Транспортируют О2 и СО2

5-1012

 

 

 

 

Гранулоциты

 

 

 

 

 

 

 

Нейтрофилы

(полиморфноядерные

Фагоцитируют и разрушают внедрившиеся бактерии

5-109

лейкоциты

 

 

 

Эозинофилы

 

Разрушают более крупные паразитические организмы и

2-108

 

 

влияют на аллергические воспалительные реакции

 

 

 

 

 

Базофилы

 

Выделяют гистамин и серотонин при некоторых иммунных

4-107

 

 

реакциях

 

Моноциты

 

Становятся макрофагами в тканях, где фагоцитируют и

4-108

 

 

переваривают внедрившиеся бактерии, инородные тела и

 

 

 

стареющие клетки

 

 

 

 

 

Лимфоциты

 

 

 

В-клетки

 

Вырабатывают антитела

2-109

Т-клетки

 

Убивают клетки, инфицированные вирусом, и регулируют

1-109

 

 

активность других лейкоцитов

 

 

 

 

Клетки-киллеры (NK - клетки)

Убивают клетки, инфицированные вирусом, и клетки

1-108

 

 

некоторых опухолей

 

Тромбоциты

 

Инициируют свертывание крови

3-1011

(фрагменты клеток, образующиеся в

 

 

костном мозге из мегакариоцитов)

 

 

 

 

 

 

17.5.2. Образование каждого типа клеток в костном мозге регулируется отдельно [23, 25]

Большинство лейкоцитов функционирует не в крови, а в других тканях, а кровь просто переносит их туда, где они нужны. Местная инфекция или повреждение любой ткани, например, быстро привлекает лейкоциты, и это составляет часть воспалительной реакции, помогающей в борьбе с инфекцией при заживлении раны. Воспалительная реакция - сложный процесс, в котором участвуют разнообразные сигнальные молекулы, выделяемые местными тучными клетками, нервными окончаниями, тромбоцитами и лейкоцитами, а также комплемент (разд. 18.5). Некоторые из этих сигнальных молекул воздействуют на ближайшие капилляры таким образом, что адгезия между эндотелиальными клетками уменьшается, но зато их поверхность становится более адгезивной для передвигающихся рядом лейкоцитов. Так лейкоциты ловятся, как мухи на липкую бумагу, а затем могут выйти из сосуда, протискиваясь между эндотелиальными клетками и «проедая» путь через базальную мембрану с помощью переваривающих ферментов. Другие молекулы действуют как хемоаттрактанты для определенных видов лейкоцитов; под их воздействием эти клетки поляризуются и начинают ползти по направлению к источнику аттрактанта. В результате большое количество лейкоцитов переходит в пораженную ткань (рис. 17-28).

Другие сигнальные молекулы, образовавшиеся в ходе воспалитель-

Рис. 17-28. Миграция лейкоцитов из кровотока в поврежденную или инфицированную ткань при воспалительной реакции. Эту реакцию запускают различные сигнальные молекулы, локально выделяемые клетками (главным образом в соединительной ткани) или образующиеся при активации комплемента. Некоторые из таких медиаторов воздействуют на эндотелиальные клетки капилляров, ослабляя их соединение с соседними клетками, в результате чего капилляры становятся более проницаемыми. Изменение поверхности эндотелиальных клеток ведет также к прилипанию крови. Другие медиаторы действуют как хемоаттрактанты, заставляя связавшиеся лейкоциты пробираться между эндотелиальными клетками капилляров в ткань.

180

ной реакции, уходят в кровь и побуждают костный мозг к усиленной выработке лейкоцитов и их выбросу в кровяное русло. Костный мозг служит главной мишенью для такой регуляции, так как у взрослых млекопитающих клетки крови, за исключением лимфоцитов и некоторых макрофагов, образуются только в костном мозге. Эта регуляция более или менее специфична в отношении клеток определенного типа: например, некоторые бактериальные инфекции приводят к избирательному увеличению числа нейтрофилов, а заражение простейшими и другими паразитами - к накоплению эозинофилов (именно поэтому врачи обычно используют подсчет лейкоцитов разного типа при диагностике инфекционных и иных воспалительных заболеваний).

Вдругих случаях избирательно возрастает число эритроцитов, как, например,

учеловека в условиях больших высот, где кислорода недостаточно. Таким образом, образование кровяных клеток (гемопоэз) по необходимости подвергается сложному контролю, при котором количество клеток каждого типа регулируется индивидуально, в соответствии с меняющимися потребностями. Понять, как работают эти регуляторные механизмы - задача огромной важности для медицины.

У интактных животных гемопоэз изучать труднее, чем превращения клеток таких тканей, как эпидермис. В эпидермисе существует простая, регулярная пространственная организация, при которой легко следить за процессом обновления и находить стволовые клетки. В кроветворных тканях это не так просто. Но, с другой стороны, кроветворные клетки живут как кочевники, и это делает их удобным объектом для экспериментов иного рода. Диспергированные кроветворные клетки можно легко, не повреждая их, переносить из одного организма в другой; кроме того, пролиферацию и дифференцировку отдельных клеток и их потомства можно наблюдать и изучать в условиях культуры. По этой причине о молекулах, регулирующих образование клеток крови, известно больше, чем об аналогичных регуляторных молекулах в других тканях млекопитающих. Но и о клетках крови эти знания еще весьма недостаточны.

17.5.3. Костный мозг содержит кроветворные стволовые клетки

[23, 26]

Различные типы кровяных клеток и их ближайших предшественников в костном мозге можно узнать по внешнему виду (рис. 17-29). Они перемешаны друг с другом, а также с жировыми клетками и фибробластами, образующими нежную опорную сеть коллагеновых волокон и другие компоненты внеклеточного матрикса. Кроме того, вся ткань пронизана тонкостенными кровеносными сосудами (кровяными синусами), в которые переходят новообразованные клетки крови. Имеются также мегакариоциты; в отличие от других кровяных клеток они остаются в костном мозге и после созревания, составляя одну из самых заметных гистологических особенностей этой ткани; они необычайно велики (до 60 мкм в диаметре) и имеют высокополиплоидное ядро. В нормальных условиях мегакариоциты облепляют стенки кровяных синусов и протягивают свои отростки сквозь отверстия в их эндотелиальной выстилке; от этих отростков отделяются тромбоциты, которые затем уносит кровь (рис. 17-30).

Отсутствие видимой упорядоченности в расположении различных клеток костного мозга затрудняет идентификацию каких-либо предшественников зрелых кровяных клеток, кроме самых ближайших. На очень ранних стадиях развития, когда явная дифференцировка еще не началась, все клетки-предшественницы внешне весьма сходны между собой, а у первичных стволовых клеток вообще нет видимых признаков,

Соседние файлы в папке Литература БФХ