Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Литература БФХ / molekuljarnaja biologija kletki v3

.pdf
Скачиваний:
105
Добавлен:
10.02.2017
Размер:
24.19 Mб
Скачать

131

мум 16 генов содержат гомеобокс, хотя пределы гомологии варьируют достаточно широко, и почти все гомеобокс - содержащие гены являются ключевыми среди примерно 50 генов, контролирующих пространственную организацию вдоль переднезадней оси тела. Сюда относятся гены полярности яйца (bicoid), pair-rule-гены (ftz, even-skipped, paired), гены полярности сегментов (gooseberry, engrailed), практически все гомеозисные селекторные гены из комплексов Antennapedia и bithorax. Существует как минимум один ген (zerknüllt), участвующий в формировании пространственной организации по дорсовентральной оси, содержащий гомеобокс. Из этих наблюдений следует, что наличие гомеобокса - один из характерных признаков генов, контролирующих становление пространственной организации.

Гены, содержащие гомеобокс, как правило, кодируют белки, локализованные в клеточных ядрах, что предполагает их прямое участие в контроле экспрессии генов. Кроме того, последовательность аминокислот, образующая гомеобокс, вероятно, позволяет белкам дрозофилы, которые ее содержат, связываться со специфическими участками ДНК, функционирующими как энхансеры и сайленсеры (разд. 10.2.7) генной экспрессии, в том числе экспрессии других содержащих гомеобокс генов.

Существование специфических регуляторных последовательностей в ДНК, узнаваемых белками, которые содержат домен, соответствующий гомеобоксу, позволяет предположить, что и они являются характерной чертой генов, содержащих гомеобокс и участвующих в формировании пространственной организации. Нетрудно представить, как такие гены с крайне незначительными различиями в регуляторных последовательностях и последовательностях, кодирующих белки, могут объединиться и образовать сложную сеть, в которой продукты одного гена контролируют экспрессию другого; подобный механизм обсуждался, когда мы рассматривали формирование пространственной организации вдоль переднезадней оси эмбриона дрозофилы. В такой системе механизмы клеточной памяти и детерминацию можно достаточно просто объяснить саморегуляцией экспрессии генов, сходной с саморегуляцией, которая была описана для генов Ultrabithorax (см. рис. 16-73).

16.5.19. В эволюции гомеобокс обладает высокой степенью консерватизма [62, 63]

Удивительная гомология генов, содержащих гомеобокс, дает возможность предполагать, что они возникли за счет собственной дупликации и дивергенции. Возникновение генов путем тандемной дупликации и дивергенции следует также из кластерного расположения многих этих генов в геноме дрозофилы. Комплекс Antennapedia, например, включает гены ftz, bicoid, zerknüllt, а также набор гомеозисных селекторных генов. Формирование кластеров генов, содержащих гомеобокс, может быть отражением их истории и не является физиологической необходимостью; у мух, у которых вследствие генетических перестроек ген Ultrabithorax выщеплен из комплекса bithorax, не обнаруживается никаких аномалий в строении тела.

Представляется вероятным, что по мере усложнения строения тела к геному добавляются серии измененных генов, содержащих гомеобокс. Мутанты дрозофилы, у которых отсутствуют те или иные наборы генов, содержащих гомеобокс, характеризуются фенотипическими признаками, свойственными, возможно, структурам предкового организма. Например, удалив определенные гомеозисные селекторные гены, можно получить животное с характерным расположением множества идентичных сегментов наподобие многоножки; если бы удалось пройти по пути эволюции еще на шаг назад, удалив гены полярности сегментов и гены

132

Рис. 16-75. А. Ряд сомитов (передний конец тела находится слева, задний - справа) двухдневного куриного эмбриона, окрашенных антителами, распознающими клетки нервного гребня: последние мигрируют только через переднюю половину каждого из сомитов, поскольку клетки, составляющие эту переднюю половину, существенно отличаются от клеток задней половины (в первом случае условия для миграции клеток благоприятны, во втором - нет). Б. Участок более взрослого куриного эмбриона, окрашенный для выявления корешков спинальных нервов в тех местах, где они проходят через сомиты. Подобно клеткам нервного гребня, нервные корешки мигрируют только через переднюю половину сомита. Результаты экспериментов по пересадке тканей показывают, что такое сегментарное строение периферической нервной системы определяется исходными различиями между передними и задними клетками сомита в отношении детерминации (это напоминает характер экспрессии гена engrailed у дрозофилы). (А - из М. Rickman, J.W. Fawsett, R.J. Keynes, J. Embryol. Exp. Morphol., 90, 437-455, 1985; Б - с любезного разрешения Claudio Stern.)

pair-rule, то можно было бы получить гипотетического предка, организованного наподобие нематод без сегментации, но с сохранением различив между головой и хвостом. Исходя из такой последовательности событий, ген полярности яйца bicoid, вероятно, можно считать предковым представителем семейства генов, содержащих гомеобокс. Конечно, это пока всего лишь плод нашего воображения, но не исключено участие такого предкового гомеобокссодержащего гена в формировании пространственной организации тела, так как именно эту функцию выполняют практически все его потомки у дрозофилы.

Открытие гомеобокса ставит перед нами вопросы более широкого эволюционного значения. Гомеобокс-содержащие гены обнаружены не только у насекомых и других членистоногих, но и у нематоды С. elegans, у кольчатых червей (пиявок и дождевых червей), у морских ежей, примитивных хордовых и у позвоночных (включая лягушек, кур, мышей и человека). Гомеобоксная последовательность обладает удивительной степенью консерватизма на уровне структуры белка; один из белков, соответствующих гомеобокссодержащему гену Xenopus, обладает последовательностью, 59 из 60 аминокислот которой идентичны гомеодомену в белке Antennapedia дрозофилы; и это несмотря на 500 млн. лет независимой эволюции. Такая высокая степень консерватизма позволяет предполагать, что механизмы, контролирующие основной план строения тела у насекомых и позвоночных, могут иметь фундаментальное сходство.

16.5.20. Механизмы региональной клеточной детерминации у позвоночных и насекомых могут быть сходными [63, 64]

Описывая строение раннего зародыша дрозофилы (разд. 16.5.2), мы отмечали сходство с позвоночными. Животные и того, и другого класса в своем развитии проходят через стадию гаструляции, обеспечивающую появление различных зародышевых листков; тело представителей обоих классов подразделяется на сегменты, располагающиеся более или менее перпендикулярно по отношению к закладкам зародышевых листков. Сомиты эмбриона позвоночных и сегменты эмбрионов дрозофилы внешне сходны, но анализ их поведения показывает, что они обладают различными позиционными значениями, которые и определяют их (сомитов) дальнейшую дифференцировку. Как и в случае имагинальных дисков дрозофилы, такую позиционную детерминацию можно продемонстрировать в экспериментах по трансплантации. Так, например, у ранних куриных эмбрионов вновь формирующиеся сомиты можно пересадить на другое место. На этой стадии грудные и шейные сомиты внешне практически неразличимы, хотя грудные сомиты после пересадки в область шеи дадут начало грудным позвонкам с ребрами, а сомиты шеи после пересадки в область груди дают начало характерным шейным позвонкам. На этом сходство не заканчивается. Известно, что каждый сегмент тела насекомых делится на передний и задний компартменты, отличающиеся друг от друга по экспрессии генов engrailed. Так же резко различаются по своей химической природе передние и задние половины сомитов куриного зародыша (рис. 16-75), что проявляется в свойствах клеточной поверхности, регистрируемых с помощью некоторых лектинов, а также в их влиянии на направление роста нервных волокон.

После открытия гомеобокса появилась возможность проверить, не являются ли такие аналогии отражением распределения определенных молекул. К настоящему времени было показано, что последовательность нуклеотидов некоторых из гомеобокс-содержащих генов позвоночных гомологичны соответствующим генам дрозофилы и эта гомология простирается за пределы гомеобокса; с помощью метода гибридиза-

133

Рис. 16-76. А. Характер экспрессии двух гомеобокс-содержащих генов мыши, Нох 2.1 и Нох 3.1, выявляемый по методу гибридизации in situ в соседних продольных срезах через весь 13,5-дневный эмбрион мыши. Высокая концентрация транскриптов соответствует высокой концентрации зерен серебра на радиоавтографах. Два этих гена экспрессируются в различных, частично перекрывающихся участках вдоль переднезадней оси в головном и спинном мозге, а также в некоторых других тканях. Б. Характер экспрессии гомеобокссодержащего гена курицы (куриного а), обладающего особенно близкой гомологией с геном engrailed дрозофилы. В данном случае были использованы антитела, демонстрирующие распределение в двухдневном курином эмбрионе белка, кодируемого этим геном. В отличие от своего аналога у дрозофилы, который образует серию сегментных полос, белок en у курицы локализуется в виде отдельного скопления в среднем и заднем мозге. (А - из P. W.H. Holland, B.L. M. Hogan, Development, 102, 159-174, 1988; Б - с любезного разрешения Tom Kornberg.)

ции in situ было показано, что эти гены позвоночных экспрессируются в строго определенных участках эмбриона позвоночных (рис. 16-76). Эти данные позволяют считать, что молекулярные механизмы формирования пространственной организации у позвоночных и насекомых в своей основе очень схожи, однако оценить масштабы сходства до сих пор не представляется возможным. Например, у позвоночных пространственная организация обеспечивается в основном межклеточными взаимодействиями на стадиях дробления. Здесь нет аналога процессам, которые происходят в синцитиальном зародыше насекомых. Более того, многие специалисты по филогенезу полагают, что сегментированность тела у этих групп животных возникла в процессе эволюции независимо. К сожалению, приходится отметить, что у позвоночных не зарегистрировано ничего даже отдаленно напоминающего гомеозисные мутации, сходные с таковыми у дрозофилы. И если это так, то возникают сомнения, что исследования дрозофилы помогут внести существенный вклад в выявление общей взаимосвязи между генами и пространственной организацией тела у всех организмов.

Заключение

Тело дрозофилы, как и тело других насекомых, состоит из набора повторяющихся модифицированных базовых модулей (сегментов) со специализированными несегментированными структурами на переднем и заднем концах тела. Любое крупное подразделение каждого из сегментов определяется экспрессией особого набора контролирующих генов, уточняющих молекулярные адреса этих подразделений. Пространственная организация начинает формироваться с возникновения асимметрии яйцеклетки. Здесь можно различить две группы генов с материнским

134

эффектом, которые также называют генами полярности яйца. Одна группа этих генов отвечает за дорсовентральное распределение зародышевых листков и основных видов тканей, а другая - за переднезаднее (от головы к хвосту) расположение сегментов. Примером гена этого последнего класса служит ген bicoid, мРНК которого концентрируется на переднем конце яйца. Поскольку зародыш на начальных этапах развития представляет собой синцитий, продукт гена bicoid способен легко диффундировать через цитозоль по всему эмбриону, создавая градиент морфогена, определяющий общую организацию передней половины эмбриона. Этот градиент запускает упорядоченную экспрессию иерархически организованной структуры генов, образованной генами групп gap и pairrule, генами полярности сегментов и гомеозисными селекторными генами. Эти последние гены под влиянием гена bicoid и взаимодействия между собой начинают экспрессироваться в отдельных участках эмбриона, что постепенно приводит к разделению тела на повторяющиеся сегменты и их части.

Экспрессия генов группы gap и pair-rule носит временный характер, но она накладывает отпечаток на экспрессию генов полярности сегментов и гомеозисных селекторных генов; экспрессия этих последних генов сохраняется, подвергаясь некоторым уточнениям в процессе дальнейшего развития и обеспечивает клетки позиционной информацией. Механизм клеточной памяти частично обеспечивается положительной обратной связью (предполагающей, что белковые продукты гомеозисных селекторных генов стимулируют транскрипцию собственных генов) и частично наследуемыми изменениями структуры хроматина. Необходимость некоторых форм запоминания позиционных значений можно продемонстрировать в экспериментах на клетках имагинальных дисков, из которых возникают наружные структуры тела взрослого организма; эти клетки сохраняют память о своих исходных назначениях в течение неопределенного числа клеточных делений. Такое поведение определяется постоянным присутствием гомеозисных селекторных генов в каждой отдельной клетке любого имагинального диска. Границы компартментов, которые, по всей вероятности, поддерживаются благодаря избирательному слипанию отдельных клеток, делят клетки, характеризуемые различным состоянием дифференцировки, согласно экспрессии этих генов.

В геноме гомеозисные селекторные гены сгруппированы в два класса: комплекс Antennapedia и комплекс bithorax. Все они содержат гомеобоксную последовательность, которая кодирует высококонсервативную последовательность примерно из 60 аминокислот. Эта нуклеотидная последовательность присутствует и в некоторых генах полярности яйца, генах группы pair-rule, генах полярности сегментов, что свидетельству об общности эволюционного происхождения этих генов из гена-npeдшесвенника, который принимал участие в регуляции формирования пространственной организации. Гены, содержащие гомеобокс, обнаружены у различных животных, в том числе у круглых червей и млекопитающих. позволяет предположить, что становление пространственной организации у этих животных основано на молекулярных механизмах, сход с молекулярными механизмами, действующими у дрозофилы.

16.6. Органогенез: координированная сборка сложных тканей

Формирование пространственной организации до сих пор рассматривалось нами с точки зрения изменения свойств клеток и при этом гор меньше внимания уделялось их положению; мы следили за нарастанием этих изменений в отдельной ткани, в частности, у дрозофилы мы рассматривали эпидермис, а в конечностях позвоночных - соединитель-

135

ную ткань скелета. Однако на самом деле вследствие сложных движений в эмбриогенезе все органы представляют собой сложное сочетание различных тканей, образованных клетками, которые происходят из разных источников и руководствуются различными правилами. Клеточные движения позволяют собрать все эти компоненты воедино. В этом последнем разделе мы рассмотрим, каким образом позиционная информация управляет клеточными движениями и координирует построение сложных органов, каковыми являются конечности.

16.6.1. Избирательное слипание стабилизирует клеточные структуры, образованные по-разному детерминированными клетками

[65, 66]

В процессе развития животного клетки движутся, пролиферируют и приходят в контакт друг с другом, вследствие чего потомки этих клеток перемешиваются. У химерных зародышей мыши, например, перемешаны клетки двух исходных морул, вследствие чего во взрослом организме хаотически перемешаны клетки двух генотипов (см. разд. 16.2.5). Но если нарушение расположения клеток происходит после их детерминации, то могут наблюдаться нарушения в пространственном распределении клеток, характеризующихся различными состояниями. Приобретение клетками свойств, определяемых их положением, предупреждает возможность случайного перемешивания клеток. Феномен компартментов у дрозофилы (см. рис. 16.5.15) демонстрирует один из способов достижения этого. Вероятно, детерминированные клетки остаются в соответствующих компартментах за счет селективного слипания с клетками, обладающими таким же состоянием детерминации. Клетки, экспрессирующие одинаковые молекулярные адреса, по всей вероятности, слипаются между собой сильнее, чем клетки с иными молекулярными адресами. Очевидно, позиционная информация, записанная в результате активации таких генов, как engrailed и Ultrabithorax, проявляется посредством определенного выбора молекул адгезии клеточной поверхности.

У ранних эмбрионов амфибий стабилизирующие эффекты межклеточной адгезии в отношении организации структуры, обеспечивающей взаимное расположение различных клеточных типов, вероятно, настолько сильны, что способны восстанавливать нормальное расположение даже после искусственной диссоциации клеток, приводящей к образованию бесформенной неупорядоченной массы клеток. Клетки мезодермы, нейральной пластинки и клетки эпидермиса способны, сортируясь из такой смеси, формировать структуры с эпидермисом снаружи, мезодермой под эпидермисом и структурой, напоминающей нервную трубку, внутри (рис. 16-77). Исследования, проведенные на курином и мышином эмбрионах, дают основания полагать, что такое поведение определяется, по крайней мере частично, семейством Са2 + - зависимых гликопротеинов (кадгеринов), обеспечивающих клеточную адгезию (см. разд. 14.3.7). Эти и другие Са2 +-зависимые молекулы клеточной адгезии, такие, как N-CAM (см. разд. 14.3.6), дифференциально экспрессируются в различных тканях раннего эмбриона и антитела против этих молекул нарушают нормальную селективную адгезию клеток одного типа.

16.6.2. Пространственные структуры, образуемые молекулами клеточной адгезии, регулируют характер морфогенетических движений [66, 67]

Изменение характера экспрессии различных кадгеринов тесно коррелирует с изменением ассоциации клеток в процессе гаструляции, нейруля-

Рис. 16-77. Клетки различных участков раннего эмбриона амфибий сортируются в соответствии со своим происхождением. В классическом эксперименте, который схематически представлен на этом рисунке, клетки мезодермы, нервной пластинки и эпидермиса были дезагрегированы. После пересортировки клетки формируют структуру, похожую на нормальный эмбрион с «нервной трубкой» внутри, эпидермисом снаружи и мезодермой между ними. (P. L. Townes, J. Holtfreter, J. Exp. Zool., 128, 53-120, 1955; с небольшими изменениями.)

136

ции и формирования сомитов (рис. 16-78); такие изменения в раннем эмбриогенезе могут регулироваться и по крайней мере частично зависеть от распределения кадгеринов. В частности, кадгерины, вероятно, играют важную роль в контроле образования и рассасывания эпителиальных слоев и клеточных кластеров. Следовательно, движения, участвующие в построении раннего зародыша, определяются характером химических различий между клетками, расположенными в разных местах.

Это же общее положение иллюстрируется многочисленными иными примерами. Эпителий имагинального диска дрозофилы в процессе образования крыла взрослого организма должен выпрямиться, вытянуться и уложиться определенным образом. Хотя этот процесс во многом остается загадочным, он, вероятно, определяется локализованной экспрессией специфических молекул адгезии клеточных поверхностей, которые к настоящему времени начинают идентифицировать с помощью моноклональных антител. Распределение таких позиционно специфических молекул клеточной поверхности тесно коррелирует с характером укладки диска в процессе метаморфоза (рис. 16-79); некоторые из этих молекул, как было показано, относятся к семейству поверхностных рецепторов клетки, именуемых интегринами (разд. 14.2.17). В отличие от кадгеринов интегрины опосредуют присоединение клеток к компонентам внеклеточного матрикса. Ранее было показано, что такие взаимодействия клеток с матриксом выполняют важную роль в процессе гаструляции (см. разд. 16.1.5). Молекулы межклеточной адгезии и молекулы адгезии клеточной поверхности и матрикса можно рассматривать как два вида ключевых приспособлений для трансляции определенной структуры позиционной информации в пространственную организацию морфогенетических движений.

16.6.3. У позвоночных первичным носителем позиционной информации является мезодерма [68]

Совершенно очевидно, что позиционная информация, которой обладают клетки, может проявляться по-разному. Это особенно хорошо иллюстрируется на примере развития сложных органов. Конечность позвоночных образуется клетками шести различных типов, формирующими соединительную ткань (кости, сухожилия и т. д.), эпидермис, мышцы, выстилку кровеносных сосудов, аксоны нервных клеток и их глиальные оболочки, пигментные клетки и кроветворную ткань костного мозга. И хотя все эти компоненты обладают собственной, хорошо определенной структурой, они вносят разный вклад в формирование конечности как таковой. У мух, размеры которых невелики, поверхность тела по отношению к объему очень велика, и эпидермис, образуемый эктодермой, играет Рис. 16-79. Имагинальный диск дрозофилы, обработанный моноклональными

антителами, которые распознают позиционно-специфический антиген PS2. Четкая граница окрашенного участка соответствует краю будущего крыла, где дорсальный и вентральный эпителий крыла встречаются, образуя складку. Прерывистой линией отмечена граница компартментов вдоль переднезадней оси. (V.C. Wilcox, D.L. Bower, R.J. Smith, Cell, 25, 159-164, 1981.)

Рис. 16-78. Изменение характера экспрессии трех кадгеринов на нескольких последовательных стадиях раннего развития куриного или мышиного эмбрионов, показанное на поперечных срезах через развивающуюся нервную трубку и сомиты. Кадгерины, расположенные определенным образом, могут содействовать регуляции морфогенетических движений, участвующих в образовании нервной трубки, хорды, сомитов, нервного гребня и склеротомов. (М. Та-keichi, Trends in Genetics, 8, 213-217, 1987.)

137

доминирующую роль как в образовании экзоскелета, обеспечивающего механическую опору, так и в координации процессов формирования пространственной организации. У позвоночных, которые значительно крупнее насекомых, роли зародышевых листков изменены. Опорный каркас тела образуется соединительными тканями (главным образом за счет мезодермы); далее мы увидим, что эти ткани играют также координирующую роль в формировании пространственной организации во время органогенеза. И действительно, эксперименты на амфибиях в начале этого столетия показали, что мезодерма играет важнейшую роль в закладке пространственной организации уже на самых ранних стадиях становления общего плана строения тела.

Как уже упоминалось (см. разд. 16.1.7-16.1.9), нервная система позвоночных формируется из эктодермы под индуцирующим воздействием подстилающей ее мезодермы. Если кусочек мезодермы, расположенный непосредственно под областью будущей нервной трубки одного гаструлирующего зародыша амфибии, пересадить под эктодерму на брюшной стороне другого зародыша, то эктодерма в этом участке начнет утолщаться и сворачиваться, образуя в этом необычном месте отрезок нервной трубки. При этом особенности данного отрезка будут зависеть от происхождения мезодермы. Если мезодерма была взята из переднего участка, то из эктодермы образуется часть головного мозга; мезодерма из заднего участка вызовет образование участка спинного мозга. Это позволяет предположить, что клетки эктодермы приобретают определенные позиционные значения в зависимости от позиционных значений лежащих непосредственно под ними клеток мезодермы.

Регуляция формирования пространственной организации со стороны подстилающей соединительной ткани наблюдается при развитии многих органов позвоночных. Так, кожа и кишка со всеми их железами, придатками и локальной спецификацией приобретают характерное для них строение вследствие определенных взаимодействий, в которых компоненты соединительной ткани обеспечивают соответствующие участки эпителия соответствующей позиционной информацией. Хорошим примером тому являются эксперименты на коже, покрывающей конечности.

16.6.4. Характер и распределение производных эпидермиса контролируется дермой [66, 69]

Кожа состоит из двух слоев - эпидермиса (представляющего собой эпителий, образованный эктодермой) и дермы (являющейся соединительной тканью, образованной фибробластами, происходящими в основном из мезодермы). Из эпидермиса формируются кератинизированные придатки кожи (волосы, перья, чешуи и когти), а также многие железы. Для разных участков тела характерны различные виды кератинизированных производных: на спине, крыльях и верхних частях ног, например у курицы, располагаются ряды перьев (рис. 16-80), а на нижних частях ног - ряды чешуй. Более того, в зависимости от положения в пределах каждого ряда перья и чешуи могут различаться по форме и цвету.

Если у куриного эмбриона взять эпидермис с ноги, где он позже образует чешуи, и объединить с дермой спины, где он в норме образует перья, то из него вместо чешуи в дальнейшем будут формироваться перья, (рис. 16-81); обратная комбинация приводит к противоположному результату. Вообще дерма контролирует не только тип производных эпидермиса, но и их точное местоположение. Здесь мы вновь встречаемся с проявлением неэквивалентности (см. разд. 16.4.6): дерма разных участков тела внешне одинакова, но различается по своей способности

138

Рис. 16-80. Расположение перьевых зачатков на спине куриного эмбриона после 9 сут инкубации. Обратите внимание, что зачатки в каждом ряду разделены одинаковыми промежутками. (С любезного разрешения A. Mauger, P. Sengel.)

индуцировать определенную дифференцировку лежащего над ней эпидермиса.

Молекулярные механизмы, посредством которых соединительная ткань контролирует дифференцировку эпителия, неясны, но некоторый успех достигнут в идентификации молекул, контролирующих морфогенетические движения клеток, которые дают начало волосам, перьям или железам. И здесь также решающее значение имеют межклеточные типы адгезии, равно как и адгезия клеток с матриксом. В соединительнотканном компоненте данной структуры механические воздействия, оказываемые на коллаген, секретируемый фибробластами, приводят к агрегации последних в участках образования различных придатков. В то же время в соединительной ткани и лежащем над ней эпителии наблюдаются изменения характера экспрессии молекул клеточной адгезии, таких, как N-CAM и Е-кадгерин, которые, по всей вероятности, регулируют форму клеток и их взаимную упаковку (см. разд. 14.3.6 и 14.3.7). На границе между эпителием и соединительной тканью происходит синтез и разложение различных компонентов базальной пластинки (см. разд. 14.2.15), в том числе ламинина, протеогликанов и коллагена; при этом локализация как синтеза, так и разрушения строго контролируются, что способствует осуществлению регуляции процессов разрастания эпителия и формирования складчатости.

Рис. 16-81. Схема опытов, в которых было показано, что тип производных кожи определяется дермой.

139

16.6.5. Соединительную ткань конечности позвоночных заселяют многие типы мигрирующих клеток [11, 70]

Соединительная ткань пронизывает все тело позвоночных. В конечности соединительная ткань формирует кости и хрящи, сухожилия и связки, кожу, оболочку мышц, внешние слои стенок кровеносных сосудов и оболочки нервов и промежуточную ткань, связывающую воедино все эти компоненты. Эти формы соединительной ткани образованы фибробластами и близкородственными клетками, которые погружены в обогащенный коллагеном внеклеточный матрикс, секретируемый ими. И все эти разнообразные клетки развиваются из мезенхимы недифференцированной зародышевой ткани, заполняющей зачаток эмбриональной конечности; ее происхождение можно проследить вплоть до мезодермы боковой пластинки, соседствующей с сомитами ранних эмбрионов (см. рис. 16-15). Кроме покрывающего конечность эпидермиса, все остальные компоненты конечности являются производными популяции мигрирующих клеток, не являющихся производными боковой пластинки. Прежде чем достигнуть места назначения и принять участие в формировании структуры взрослого животного, эти клетки должны совершить длительное путешествие по эмбриональной соединительной ткани.

Такая миграция была продемонстрирована в опытах с пересадкой куриным зародышам эмбриональных клеток перепела. Хотя перепел во многом напоминает курицу, его клетки легко отличить на гистологических препаратах, так как они содержат крупную, сильно окрашивающуюся глыбку гетерохроматина, связанного с ядрышком. Такой ядрышковый маркер позволяет легко опознать пересаженные клетки, куда бы они ни попали внутри эмбриона. Если у куриного зародыша еще до закладки крыльев заместить ткань определенной группы сомитов такой же тканью от перепела, то все мышечные клетки крыльев (и только они) будут происходить от перепела (рис. 16-82). Очевидно, будущие мышечные клетки мигрируют в область закладки крыла и остаются здесь внешне неотличимыми от других клеток, но уже детерминированными, пока не наступит время их дифференцировки.

Еще одним важным примером мигрирующих клеток являются клетки, происходящие из нервного гребня - участка, расположенного вблизи нервной трубки (рис. 16-83) (см. разд. 16.11.9). Способность этих клеток мигрировать была доказана сходным образом после замены нервного гребня у цыпленка нервным гребнем перепела; идентификация клеток нервного гребня перепела проводилась по ядрышковому маркеру. Как и глиальные клетки, которые образуют оболочку аксонов нервных клеток, пигментные клетки конечности происходят из клеток нервного гребня. Чувствительные и вегетативные аксоны конечностей являются выростами нейронов, возникших из клеток нервного гребня. (Аксоны, обеспечивающие произвольные движения, напротив, являются выростами двигательных нейронов спинного мозга).

16.6.6. Пространственная организация соединительной ткани конечности не зависит от заселяющих эту ткань клеток

[71]

Если у раннего зародыша до начала образования почки конечности разрушить ткань сомитов или нервного гребня и/или нервной трубки, то можно легко получить конечности, лишенные определенных классов мигрирующих клеток или нервных волокон. В общем такие конечности во многих отношениях вполне нормальны. Можно, например, получить конечности, не содержащие мышечных клеток, но в них имеются нормальный скелет, кожа и чувствительные нервы; даже сухожилия разви-

Рис. 16-82. Если у куриного эмбриона после двух суток инкубации заменить клетки сомитов такими же клетками перепела и спустя неделю приготовить гистологические препараты из области крыла, то окажется, что мышечные клетки крыла образовались из трансплантированных сомитов перепела.

140

Рис. 16-83. Главные пути миграции клеток нервного гребня у куриного эмбриона (схематический поперечный разрез средней части тела). Из клеток, мигрирующих непосредственно под эктодермой (поверхностный путь), образуются пигментные клетки кожи; клетки, движущиеся по глубинному пути через сомиты, дают начало сенсорным и симпатическим ганглиям, и частично надпочечникам (см. также рис. 14-55).

ваются нормально, хотя затем, в отсутствие тянущих их мышц, постепенно дегенерируют. Точно так же в конечности, лишенной нервов и всех производных клеток нервного гребня, развивается нормальный скелет, кожа и мышцы, однако затем мышцы, лишенные нервной стимуляции, постепенно дегенерируют. Внутренние структуры конечности в отсутствие всего эпидермального покрова не будут развиваться нормально, однако частичное удаление довольно значительных участков эпидермиса не нарушает нормального развития.

Таким образом, пространственная организация соединительной ткани практически не зависит от других компонентов конечности. Более того, эти другие компоненты конечности обладают собственной, пространственной организацией, становление которой в значительной степени определяется соединительной тканью. Мы уже обсуждали, как это происходит, на примере эпидермиса (см. рис. 16-81); с помощью аналогичных экспериментов по трансплантации ткани можно показать, что это же справедливо в отношении популяций мигрирующих клеток, таких, как мышечные клетки, аксоны нервных клеток и пигментные клетки. Клетки всех этих типов в основном формируют структуру, сообразуясь с конечностью хозяина, независимо от того, из какого участка эмбриона они происходят. Если соединительная ткань как таковая является чем-то вроде центрального источника и хранилища позиционной информации конечности позвоночных, то каким образом она оказывает свое организующее влияние на мигрирующие клетки?

16.6.7. Соединительная ткань определяет пути перемещения и конечный адрес мигрирующих клеток [11, 72]

В принципе существует пять основных способов, посредством которых соединительная ткань контролирует популяции клеток, заселяющих ее. Она может определять:

1)пути, по которым клетки перемещаются;

2)участки, куда прибывают мигрирующие клетки;

3)масштабы пролиферации;

4)способ дифференцировки;

5)вероятность выживания.

Значение каждого из этих способов контроля варьирует в зависимости от типа мигрирующих клеток, но ни один из них не изучен достаточно полно. В самом деле, практически ничего не известно о молекулярных основах системы позиционных значений соединитель-

Соседние файлы в папке Литература БФХ