Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
24
Добавлен:
13.05.2017
Размер:
680.45 Кб
Скачать

Вопрос 2.

Изменение частоты звука при движении источника и приёмника. Эффект Доплера.

Эффект Доплера . Движение источника звука , сопровождающееся изменением расстояния от источника до приёмника ,приводит к изменению частоты принимаемого звука. Это связано с тем, что скорость распространения звуковой волны в среде не зависит от скорости движения источника. Поэтому , если источник звука движется от приёмника со скоростью vсм/сек, то за единицу времени мимо приёмника пройдут не все максимумы, а только часть их: приёмник отметит меньшее число колебаний, чем создаёт источник. Убедиться в этом можно при помощи элементарного расчёта. Пусть источник в начале секунды находился на расстоянии с см от приёмника, с см/сек –скорость звука в среде, тогда через секунду он будет находится на расстоянии с+vсм на этом расстоянии уложатся всеfмаксимумов которые за 1 сек созданы излучателем (f-частота) , но за 1 секунду до приёмника дойдут не все максимумы, а часть на расстоянии с смf’=f/(1+v/c) –частота полученная приёмником ,если приёмник приближается тоf’=f/(1-v/c); если же вдижется приёмник, а не источник ,то если приёмник движется к источнику со скоростьюvто за 1 сек он пройдёт неf, аf‘’ максимумов, гдеf’’=f(1+v/c) если удаляется тоf‘’=f(1-v/c);

Билет 26.

Вопрос 1.

Энергия запасённая в колебательной системе. Взаимопревращение потенциальной и кинетической энергии. Потери энергии в системе с затуханием. Добротность.

Запас начальной кинетической и потенциальной энергий определяется из начального смещения и начальной скорости. Если бы потери энергии в системе отсутствовали, то этот начальный запас энергии оставался бы неизменным при колебаниях. Процесс колебаний сопровождался бы только переходом энергии из потенциальной в кинетическую и обратно, которые будут происходить в двое большей частотой, чем сами колебания.

U=kx2 /2=kx2cos2(wt+p)/2=kX2(1+cos2(wt+p))/4;

Tk=mV2/4(1-cos2(wt+p))/4; формулы содержат двойную частоту, но изменения потенциальной и кинетической энергий происходят по гармоническому закону. Так как амплитуды смещения и скорости связаны соотношенниемV=wX; то полная энергия равнаW=Tk+U=kX2/2=mV2/2;

При наличии трения , являющегося внешней силой, энергия колебаний уменьшается.

Добротноть.Для характеристики осциллирующей системы часто принимается величинаQназываемая добротностью. Эта величина представляет собой умноженное на 2отношение запасённой энергии к среднему значению энергии, теряемому за один период. Большим значениямQсоответствует слабое затухание осциллятора.Q=/, гделогарифмический декримент затухания.

Вопрос 2.

Динамика твёрдого тела. Уравнение моментом относительно неподвижной точки, неподвижной оси и движущейся оси, проходящей через центр масс при плоском движении.

Твердое тело может рассматриваться как система материальных точек, расстояние между которыми постоянно.Поэтому все уравнения справедливые для системы материальных точек справедливы и для твердого тела: dp/dt=F;dL/dt=M; Для твёрдого тела эти уравнения являются замкнутой системой с их помощью без каких либо дополнительных условий можно полностью определить движение твёрдого тела в заданых внешних силовых полях. Необходимо лишь знать начальные условия. Из кинематики плоского движения известно, что в этом случае все точки движутся в пврвллельных плоскостях . Поэтому достаточно рассмотретьь движение какого-либо сечения тела в одной плоскости. Вектор угловой скорости всегда перпендикулярен плоскоски и следовательно имеет постоянное направление. Поэтому если осьZсвязанной с телом системы провести перпендикулярно плоскости движения, то угловая скороть вращения всегда будет направленна по этой оси. Для того чтобы избежать учёта центробежных моментов тензора инерции целесообразно ось вращения провести через центр масс. Таким образом уравнения для плоского движения примут вид:mdv/dt=F;Jdw/dt=M;

24

Соседние файлы в папке Билеты 2011-2012