Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену.doc
Скачиваний:
295
Добавлен:
22.08.2018
Размер:
1.26 Mб
Скачать

Общая характеристика и классификации методов оксидиметрии

В основе классификации методов оксидиметрии лежит тип используемого титранта (рабочего раствора). Наибольшее распространение получили следующие методы оксидиметрии:

– перманганатометрия: основным титрантом служит раствор KМnO4;

– иодометрия: титранты – растворы иода и тиосульфата натрия Na2S2O3·5Н2O;

– броматометрия: титрант – раствор бромата калия KВrO3.

46. Метод перманганатометрии, его сущность.Условия проведения перманганатометрического титрования. Титрант, его приготовление и стандартизация. Определение солей железа (II) в растворах.

Метод перманганатометрии основан на реакциях окисления различных веществ перманганатом калия. Окисление проводят в сильнокислой среде, в которой MnO4ˉ проявляет сильные окислительные свойства. Продуктом восстановления KМnO4 в кислой среде является почти бесцветный ион Mn2+:

MnO4‾ + 8 H+ + 5 ē → Mn2+ + 4 H2O,

что удобно для фиксирования точки эквивалентности. При титровании розовая окраска иона MnO4ˉ становится заметной от одной избыточной капли рабочего раствора KMnO4, поэтому никакого специального индикатора не требуется (безиндикаторное титрование).

Для создания сильнокислой среды пользуются растворами H2SO4. Рабочий раствор KМnO4 готовят заранее, оставляют его на несколько дней до полного осаждения Mn2+. В качестве стандартных веществ для установления титра раствора KМnO4 используют дигидрат щавелевой кислоты Н2С2О4·2Н2О или безводный оксалат натрия Nа2С2О4.

Калия перманганат в сильнокислой среде количественно восстанавливается щавелевой кислотой:

2 KМnO4 + 5 H2C2O4 + 3 H2SO4 → 2 MnSO4 + K2SO4 + 10 CO2 + 8 H2O

MnO4ˉ + 8 H+ + 5 ē → Mn2+ + 4 H2O 2

Н2C2O4 – 2 ē → 2 CO2 + 2 H+ 5

2 MnO4ˉ + 6 H+ + 5 H2C2O4 → 2 Mn2+ + 10 CO2 + 8 H2O

Чтобы ускорить обесцвечивание первых порций KМnO4, реакционную смесь в колбе для титрования нагревают до 80-90оС (кипятить нельзя во избежание разложения щавелевой кислоты). После появления в реакционной смеси катализатора – ионов Mn2+, реакция протекает с большей скоростью, так что последующие порции раствора KМnO4 в ходе титрования обесцвечиваются сразу же.

В качестве примера рассчитаем и построим кривую титрования соли железа (II) перманганатом в кислой среде. Ионное уравнение этой реакции таково: (Свириденко – 138)

47. Особенности метода иодометрии. Основные рабочие растворы в иодометрии, их стандартизация. Определение окислителей методом косвенного титрования. Определение восстановителей методом прямого и обратного титрования. 

Иодометрией называется метод титрометрического анализа, при котором о количестве определяемого вещества судят по количеству поглощенного или выделенного иода.

Метод иодометрии основан на окислительно-восстановительных реакциях, связанных с превращением I2 в ионы I‾ и обратно:

I2 + 2 ē ↔ 2 I‾

Свободный йод является окислителем, а иодид-ион является восстановителем. Поэтому йодометрические методы применяются как для определения окислителей, так и для определения восстановителей.

Основными рабочими растворами в иодометрии являются растворы йода I2 для прямого титрования восстановителей и раствор натрия тиосульфата Na2S2O3·5H2O для определения окислителей и для обратного титрования восстановителей.

Основной титриметрической реакцией в методе иодометрии является взаимодействие раствора иода с рабочим раствором тиосульфата натрия:

I2 + 2 Na2S2O3 → 2 NaI + Na2S4O6

(тетратионат Na)

I2 + 2 ē → 2 I‾ 1

2 S2О32ˉ – 2 ē → S4О62ˉ 1

I2 + 2 S2О32ˉ → 2 I‾ + S4О62

Из полуреакции 2S2О32ˉ/S4О62ˉ видно, что fэкв.(Na2S2О3) = 1.

Следовательно, M (Na2S2O3) = MЭ (Na2S2O3) и Сн(Na2S2O3) = CМ (Na2S2O3).

В качестве индикатора в иодометрии используется водный раствор крахмала, который образует с молекулярным йодом йодкрахмальное соединение синего цвета. При титровании восстановителей рабочим раствором йода точка эквивалентности определяется по появлению интенсивно-синего окрашивания. При титровании I2 рабочим раствором тиосульфата натрия конец реакции определяется по исчезновению синей окраски от одной капли раствора натрия тиосульфата. Крахмал необходимо добавлять в самом конце титрования, когда йода в растворе становится мало и раствор приобретает соломенно-желтый цвет.

Количественное определение окислителей методом иодометрии производят следующим образом: к подкисленному раствору окислителя прибавляют избыток раствора KI. В результате реакции выделяется эквивалентное количество I2, который оттитровывают в присутствии крахмала рабочим раствором соответствующего восстановителя и по объему восстановителя, израсходованного на титрование, определяют количество окислителя.

Дихромат калия в кислой среде стехиометрично реагирует с растворимыми иодидами с образованием эквивалентного количества молекулярного йода:

K2Cr2O7 + 6 KI + 7 H2SO4 → Cr2(SO4)3 + 3 I2 + 7 H2O + 4 К2SO4

Cr2O72ˉ + 14 H+ + 6 ē → 2 Cr3+ + 7 H2O 1

2 I‾ – 2 ē → I2 3

Cr2O72‾ + 6 I‾ + 14 H+ → 2 Cr3+ + 3 I2 + 7 H2O

Образовавшийся молекулярный йод оттитровывают раствором тиосульфата натрия, точную концентрацию которого следует установить.

Согласно принципу эквивалентности, количество I2, образовавшегося в реакции, эквивалентно количеству K2Cr2O7 и количеству Na2S2O3: nэ2Cr2O7) = nэ(I2) = nэ(Na2S2O3)

Обратное йодометрическое титрование. К раствору определяемого вещества (S2- иона) добавляют избыточное количество стандартного раствора йода и остаток не вступившего в реакцию с восстановителем раствора I2 оттитровывают рабочим раствором тиосульфата натрия.