Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ХИМИЯа.doc
Скачиваний:
26
Добавлен:
04.11.2018
Размер:
863.74 Кб
Скачать

Законы электролиза

Количественная характеристика процессов электролиза определяется законами, установленными Фарадеем. Общая формулировка законов Фарадея: масса электролита, подвергавшаяся превращению при электролизе, а также масса образующихся на электродах веществ прямо пропорциональны количеству электричества, прошедшего через раствор или расплав электролита, и эквивалентным массам соответствующих веществ.

Закон Фарадея выражается следующим уравнением:

m = ЭIt / F,

где m - масса образовавшегося или подвергавшегося превращению вещества;

Э - его моль эквивалентная масса;

I - сила тока, А;

t - время, с;

F - число Фарадея (96500 Кл или 26,8 Ачас), т. е. количество электричества, необходимое для осуществления электрохимического превращения одного эквивалента вещества.

Пример 5. Какой объём водорода выделится на катоде и какова сила тока при электролизе водного раствора Na2SO4, если за 4 часа на аноде было получено 11,2 л кислорода?

Решение 11,2 л - 0,5 моля - 16 г - 2 эквивалента

( 1 эквивалент O2 = 16/2 = 8 г)

По закону эквивалентов, на катоде выделится также 2 моль эквивалента водорода или 22,4 л (1 эквивалент водорода = 11,2 л)

Для получения одного эквивалента требуется затратить количество электричества, равное одному Фарадею, - 26,8 Ачас, следовательно, для получения 2Э кислорода требуется 2F электричества, т. е. 53,6 Aчас.

I = 53,6/4 = 13,4 A.

Пример 6. Сколько граммов меди(II) выделится на катоде, если затрачено 2F электричества?

Решение. По закону Фарадея:

m = ItЭ/F = 2FЭ/F = 226832/268 = 64 г.

It - количество электричества, по условию задачи равно 2F;

Э - эквивалент меди(II), равный а.м./В = 64/2 = 32 г.

Коррозия металлов

Коррозия - самопроизвольный термодинамический обусловленный процесс разрушения (окисления) металлических материалов, происходящий под физико-химическим воздействием окружающей среды ( G = 0). Так как в этом процессе обязательно участвует твёрдая металлическая поверхность (фаза), то он является гетерогенным.

Существует несколько классификаций коррозионных процессов. По механизму протекания процессов все виды коррозии можно разделить на химические и электрохимические.

Химическая коррозия металлов - это процессы окисления металла, происходящие в газах и при высоких температурах, например: Fe + Cl2 = FeCl2

Fe - 2e = Fe2+ Cl2 + 2e = 2Cl-

Электрохимическая коррозия - это самопроизвольное разрушение металла в электрически проводящей среде, т.е. в растворе электролите.

Таким образом, коррозия металлов - это процессы совместного протекания окисления металла и восстановления окислителя, находящегося в окружающей среде. Эти процессы будут происходить в том случае, когда электродный потенциал окислителя ок больше, чем электродный потенциал восстановителя восст. Чем больше разность в значениях электродных потенциалов окислителя и восстановителя, тем более вероятны коррозийные процессы и выше скорость их протекания.

К электрохимической коррозии относятся все случаи коррозии в водной среде.

В воде обычно содержится как растворённый кислород, так и ионы водорода, способные восстанавливаться:

O2 + 4H+ + 4e = 2H2O

O2 + 2H2O + 4e = 4OH-

2H+ +2e = H2

Растворённый кислород и ионы водорода являются важнейшими окислителями, вызывающими коррозию металлов.

Потенциал, отвечающий электродному процессу (I), (2):

 = 1,229 - 0,059pH.

В нейтральных водных средах (pH = 7) потенциал будет иметь значение   0,8 В. Следовательно, растворённый в воде или в нейтральном водном растворе кислород может окислить те металлы, потенциал которых меньше, чем 0,8 В, т. е. металлы, расположенные в ряду напряжений от его начала до серебра (см. прил. 4).

Потенциал, отвечающий электродному процессу (3) в нейтральной среде:  = - 0,059pH  - 0,41 В. Таким образом, ионы водорода могут окислять только металлы, потенциал которых меньше -0,41 В (металлы, расположенные в ряду от начала до кадмия)

Наиболее опасным окислителем, вызывающим коррозионное разрушение металлоконструкций, является O2, входящий в состав воздуха, воды и земной коры.

При рассмотрении катодных процессов, протекающих в кислой среде, необходимо учитывать природу металла, а также природу и концентрацию среды. Так, в разбавленной и концентрированной HCl и разбавленной H2SO4 коррозируют только металлы, имеющие меньший потенциал, чем H/H + = 0,00, т.к. в этих кислотах ионом - окислителем является ион водорода.

В концентрированной H2SO4 и разбавленной и концентрированной HNO3 корродируют многие металлы. В этих кислотах ионами - окислителями являются сера и азот и катодные процессы представляют процессы восстановления серы и азота серной и азотной кислот соответственно, а продукт восстановления зависит от природы металла ( табл.1).

Таблица 1

Электродный

НАИМЕНОВАНИЕ КИСЛОТЫ

потенциал

Соляная

Серная

Азотная

металла

разбавлен.

концентр.

разбавлен.

концентр.

разбавлен.

концентр.

ме >H/H+

н/р

н/р

н/р

SO2

NO

NO2

0<ме.> -0,7

H2

H2

H2

S

N2

N2O

ме< -0,7

H2

H2

H2

H2S

NH4+

N2

Пример 7. Написать уравнения процессов, проходящих при коррозии Zn в разбавленной HNO3 и уравнять методом электронно - ионных уравнений.

Решение . Zn = - 0,76 B (прил. 4); по значению электродного потенциала цинк относится к активным металлам и при взаимодействии с разбавленной HNO3 продукт восстановления будет NH+4 (табл. 1).

Уравнение: 4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O

4 Zn - 2e = Zn2+

NO-3 + 8e + 10H+ = NH+4 + 3H2O

Соседние файлы в предмете Химия