Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Geodezia_bilety_chast1.doc
Скачиваний:
77
Добавлен:
04.12.2018
Размер:
378.37 Кб
Скачать

30. Спутниковые методы определения координат

Наблюдения спутников с помощью специальных спутниковых фотографических камер из пунктов, расположенных далеко друг от друга, из разных странах и даже на разных материках, дают возможность вычислить расстояния между этими пунктами, определить их взаимное положение на земной поверхности. Таким путем можно осуществить, например, геодезическую привязку того или иного острова к сети координат, установленной на материке. Наблюдения, выполняемые в течение многих лег со станций, расположенных на разных материках, позволяют выявлять изменения расстояний между станциями и изучать таким образом закономерности движения материков.

Задачи спутниковой геодезии подразделяются на геометрические и динамические. Геометрические задачи решаются на основе одновременных (синхронных) наблюдений спутников с двух или более станций. В результате решения этих задач строятся сети космической триангуляции, подобные сейм триангуляции, создаваемым классическими (наземными) методами. Однако если в наземных сетях стороны треугольников обычно не превышают 20-30 км (расстояния между соседними геодезическими знаками - вышками), то в космической триангуляции они могут достигать нескольких тысяч километров.

Наряду с фотографическими камерами в спутниковой геодезии все более широкое применение находят лазерные спутниковые дальномеры, позволяющие с высокой точностью измерять расстояния до спутников. 

К началу 1990-х годов относится массовое внедрение геоинформационных технологий - научно-технического комплекса, позволяющего формализовать и реализовывать накопление, хранение, обработку и использование пространственно координированных данных с помощью средств географических информационных систем (ГИС). В последние годы ГИС-технологии находят широкое распространение не только в картографии, но и в целом ряде отраслей экономики, а также активно используются в сети Интернет.

Научно-технический прорыв последних лет - спутниковые системы позиционирования, ССП (Global Positioning System, GPS, GPS-system) - технологические комплексы, предназначенные для позиционирования объектов на поверхности Земли. GPS-системы позволяют отслеживать координаты (и их изменение) даже быстродвижущихся объектов.

32. Теодолитный ход и его элементы

Ход теодолитныйгеодезический ход, являющийся плановым съемочным обоснованием топографических съемок или других видов геодезических работ. Теодолитный ход создается путем измерения горизонтальных углов и растояний между точками (способ полигонометрии).

По точности измерения горизонтальных углов и расстояний линейно-угловые ходы делятся на две большие группы: теодолитные ходы и полигонометрические ходы.

Теодолитный ход может быть разомкнутый – вытянутый ход, начало и конец которого опираются на пункты геодезического обоснования более высокого порядка. У этого хода углы при начальной и конечной точках совпадающих с пунктами съемочного обоснования, называют примычними.

Замкнутый – сомкнутый многоугольник, обычно привязанный к одному из пунктов геодезического обоснования. Для привязки, т.е. для передачи координат от исходного пункта, измерены углы и линия между пунктами.

Висячий – ход примыкает к геодезическому обоснованию одним своим концом, второй конец остается свободным.

Точку поворота хода намечают так, чтобы над ней можно было установить теодолит для измерения угла: с нее хорошо бы просматривалась и была доступна для съемки окружающая местность: были видны знаки, установленные на предыдущей и последующей точках хода: чтобы от нее удобно было измерять длины линии до следующих точек хода: чтобы длины сторон не превышали 300 – 500 м. и не были короче 50 м., а в среднем равнялись 250 м.: при съемке контуров методом перпендикуляров стороны хода располагались от снимаемых границ не далее 50 – 70 м. Съемочные работы выполняют с пунктов съемочной сети способами:

прямоугольных координат (перпендикуляров) для объектов, расположенных вдоль теодолитных ходов. Длина перпендикуляра не должна превышать 8, 6, и 4 метра соответственно в масштабе 1:2000, 1:1000, и 1:500. При применении эккера эти расстояния можно увеличить до 60, 40, и 20 метров;

линейных засечек, когда четкий контур местности удален от опорных не дальше длины мерного прибора. При съемке способом линейных засечек следует стремиться к тому, чтобы исходная сторона и линии засечек образовали равнобедренный треугольник;

угловых засечек, если не возможно измерить расстояние до характерных точек объекта угол при засекаемой точке не должен быть менее 30 и не более 150 градусов, а расстояние до него не более 120 метров при съемке в масштабе 1:2000 и 250 метров – в масштабе 1:5000;

полярных координат при съемке остальных объектов. При этом способе расстояние от исходного пункта до контурной точки, измеренное нитяным дальномером, не должно превышать 150 и 200 метров соответственно.

В теодолитных ходах горизонтальные углы измеряют с ошибкой не более 30»; относительная ошибка измерения расстояний mS/S колеблется от 1/1000 до 1/3000.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]