Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 КУРС (ФИЗИОЛОГИЯ РАСТЕНИЙ) / Разобранные билеты физиология растений.docx
Скачиваний:
275
Добавлен:
16.12.2018
Размер:
5.34 Mб
Скачать

57. Почва как источник минеральных элементов для растений.

Растения получают углерод и кислород преимущественно из воздуха, а остальные элементы из почвы. Питательные элементы - это химические элементы, которые необходимы растению и не могут быть заменены никакими другими. Питательные вещества - это соединения, в которых имеются эти элементы. Питательные элементы содержатся в почве в 4 формах: 1) прочно фиксированные и недоступные для растения (например, ионы калия и аммония в некоторых глинистых минералах, 2) труднорастворимые неорганические соли (сульфаты, фосфаты, карбонаты) и в такой форме недоступные для растения, 3) адсорбированные на поверхности коллоидов, доступные для растений благодаря ионному обмену на выделяемые растением ионы, 4) растворенные в воде и поэтому легко доступные для растений.

Ионы поступают в клетки ризодермы из почвенного раствора и благодаря контактному обмену Н+, НСО-3 и анионов органических кислот на ионы минеральных веществ почвенных  частиц. Контактный обмен ионов клеточной стенки ризодермы с частицами почвы осуществляется без перехода ионов в почвенный раствор. Тесный контакт обеспечивается благодаря выделению слизи корневыми волосками и отсутствию у ризодермы кутикулы и других защитных покровов. Так как адсорбированные ионы находятся в постоянном колебательном движении и занимают определенный объем - сферу колебаний, при тесном контакте поверхностей сферы колебаний двух ближайших адсорбированных ионов могут перекрываться, в результате чего осуществляется ионный обмен.

Выделяя различные вещества (углекислый газ, аминокислоты, сахара и другие), корень растения изменяет состояние питательных веществ в прикорневой зоне непосредственно, например, путем выделения СО2 (СО2 + Н2О ® Н+ + НСО-3: повышение растворимости фосфатов и карбонатов) и косвенно, создавая благоприятные условия для ризосферы, которая играет большую роль в превращении почвенных минералов.

58. Реакция растений на водный дефицит. Растения испытывают водный дефицит, когда скорость транспирации пре­восходит скорость поглощения воды корневой системой. Такая ситуация воз­никает не только при засухе, но и в условиях почвенного засоления, а также при низких температурах. В двух последних случаях дегидратация является ком­понентом стрессов «неводной» природы и развивается в растениях, когда ко­личество воды в почве чаще всего не ограничено, однако эта вода недоступна для растения. Например, при почвенном засолении вода не поглощается корневой системой из-за высокого осмотического давления (низкого водного по­тенциала) почвенного раствора.

Снижение содержания воды в клетках при водном дефиците и сопутствую­щее обезвоживанию увеличение концентрации ионов в цитоплазме вызывают различного рода нарушения в структуре и функциях биополимеров, в частно­сти происходит денатурация белков и подавляется их ферментативная актив­ность, изменяется структура липидного бислоя мембран и нарушается их це­лостность. Деструктивные изменения в мембранах в свою очередь приводят к нарушению внутриклеточной компартментации веществ и подавлению электрогенеза. На клеточном уровне водный дефицит выражается в потере тургора. На уровне целого растения водный дефицит часто проявляется в обращении градиента водного потенциала в системе почва —корень — побег и ингибировании роста. Способность растения адекватно отвечать на водный дефицит и выживать в условиях водного дефицита зависит от эффективности защитных механизмов растения. Некоторые ответные реакции растения на водный дефи­цит могут наблюдаться уже через несколько секунд после начала действия стрес­сора. К ним относятся, например, изменения в фосфорилировании белков. Другие ответы требуют более длительного времени — от нескольких минут до нескольких часов, как в случае изменений в экспрессии генов.

В результате индукции механизмов устойчивости к водному дефициту рас­тение становится способным пережить действие стрессора. Развитие устойчи­вости может быть результатом индукции как механизмов избежания, так и механизмов резистентности.