Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 КУРС (ФИЗИОЛОГИЯ РАСТЕНИЙ) / Разобранные билеты физиология растений.docx
Скачиваний:
275
Добавлен:
16.12.2018
Размер:
5.34 Mб
Скачать

67.Фоторазложение воды.

Комплекс фотоокисления воды интегрирован в белок в составе ФС2. Реакции фотоокисления воды протекают на внутренней стороне мембран ти- лакоида. Реакцию фотоокисления воды можно записать как: 2Н2О →(4 кванта света)→ 4 Н+ + 4 ē + О2. Для осуществления этой реакции необходимо согласовать образование окислительных эквивалентов в реакционном центре, происходящее как одноэлектронный процесс при поглощении каждого кванта света, с четырех электронным окислением воды до молекулярного кислорода. Кроме того, необходимо предотвратить взаимодействие промежуточных продуктов фотоокисления воды с другими молекулами и обеспечить равномерное распределение свободной энергии по последовательным стадиям фотоокисления. В настоящее время установлены следующие черты процесса фотоокисления воды. Четыре электрона отщепляются от двух молекул воды последо- вательно в результате четырех актов поглощения энергии света в одном реакционном центре (альтернатива кооперативной гипотезе). Молекулярный кислород образуется после удаления четырех электронов из воды, но ионы водорода высвобождаются друг за другом. Эти факты легли в основу цикли- ческой модели А. Жолио и Б. Кока (1970, 1975). Переход из любого S-состояний в следующее происходит в момент, когда фото окисленный компонент «Z» в составе РЦ ФС2 получает электрон от комплекса фотоокисления воды. После выключения света комплексы в состояниях S3 и S2 в ходе обратных реакций переходят в устойчивое состояние S1. Существование S-цикла подтверждают эксперименты, в которых после темнового адаптационного периода в ходе импульсного освещения изолированных хлоропластов наблюдают повышение выхода кислорода при третьей вспышке в первом цикле, а затем при каждой четвертой вспышке в последующих циклах. Выделение 4-х протонов в S-цикле не является строго синхронизированным с окислительно-восстановительными превращениями компонента «Z». По одному протону выделяется на этапах S0 → S1 и S2 → S3, по два протона – на этапе S4 → S4. Состав каталитического центра определен как Mn4O4Ca. В качестве ко- фактора реакции фотоокисления воды выступают ионы хлора. Центр фотоокисления воды блокируют тепловая обработка при температуре выше 40 °С, трис-буфер в концентрации 0,4 М, гидроксиламин.

68.Световая фаза фотосинтеза.

69. Образование хлоропластов из инициальных частиц Основные этапы образования хлоропластов. Предшественники хлоропластов – пропластиды. Пропластиды образуются из инициальных частиц (зачатков), содержащихся в меристиматических клетках. Формирование хлоропласта может осуществляться двумя путями: I путь – непосредственное преобразование пропластид в хлоропласты. Реализуется при росте растений в условиях нормального соотношения дня и ночи. Пропластиды меристиматических клеток листа превращаются в хлоропласты параллельно с ростом и дифференцировкой клеток листа. Биогенез хлоропластов сопровождается формированием тилакоидных мембран хлоропластов при участии внутренней мембраны оболочки пропластиды. II путь – образование хлоропластов из этиопластов. Этиопласты – органеллы клеток растения, растущего в отсутствие света. Они образуются из пропластид и имеют некоторвые особенности внутреннего строения: содержат проламеллярное тело, сформированное в результате скопления ограниченных мембраной пузырьков и разветвленных трубчатых структур. Мембраны проламеллярного тела содержат небольшие количества каротиноидов и предшественника хлорофилла – протохлорифиллида. Формирование тилакоидных мембран хлоропластов в этиопластах происходит при участии мембран проламелярного тела в ответ на освещение. Выделяют три этапа фотоморфогенеза хлоропластов из этиопластов: 1 этап: Из трубчатых элементов проламелярных тел образуются крупные пузырьки, располагающиеся по радиусу. Этот процесс сопровождается образованием хлорофилла из имеющегося в этиопластах протохлорофиллида. 2 этап: Происходит накопление белков, липидов, пигментов и самосборка мембран тилакоидов. 3 этап: Происходит дифференциация гран. Эта стадия совпадает с интенсивным синтезом хлорофилла. Для формирования гран необходим высокий уровень содержание хлорофиллов в хлоропластах. Таким образом, формирование хлоропласта происходит только на свету. Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты). Лейкопласты чаще всего локализованы в клетках запасающих тканей. Подобно пропластидам они характеризуются слабо развитой ламеллярной структурой. Во многих случаях в лейкопластах ламеллы сохраняют связь с внутренней оболочкой. В строме лейкопластов располагаются крахмальные зерна, осмиофильные глобулы, белковые включения. Амилопласты могут превращаться в хлоро- пласты, например, как это происходит при позеленении клубней картофеля на свету. Хромопласты — это, по-видимому, результат деградации хлоропластов, при которой ламеллярная структура частично разрушается. Одновременно происходит образование осмиофильных глобул, содержащих каротиноиды. Эти глобулы располагаются сплошным слоем под оболочкой пластид. Регуляция биогенеза хлоропластов. Биогенез хлоропластов повергается контролю и регуляции со стороны внешних и внутренних факторов. Выделяю следующие виды регуляции: Фоторегуляция связана с активацией светом синтеза пигментов и белков, входящих в светособирающие комплексы. Контроль синтеза фотосинтетических пигментов основан на регуляции светом активности осуществляющих его ферментов. Фоторегуляция синтеза белков хлоропластов осуществляется на генетическом уровне. В регуляции биогенеза хлоропластов участвуют сигнальные фоторецепторные системы – фитохромная система и рецепторы синего света. Гормональная регуляция связана с влиянием на синтез пигментов и белков хлоропластов ряда фитогормонов. Генетическая регуляция включает контроль биогенеза хлоропластов на всех уровнях реализации генетической информации, включая транскрипцию, трансляцию, процессинг, транспорт белков, сборку мультипептидных комплексов. Обнаружена регуляция экспрессии ряда генов ядерной ДНК, обслуживающих хлоропласт светом, гормонами, продуктами фотосинтеза.

70. Фотосистемы, структура фотосистем и их свойства.

Компоненты электронтранспортной цепи образуют три комплекса: две фотосинтетические системы: фотосистему I (ФС I) и фотосистему II (ФС II) — и цитохромный b6f-комплекс. Кроме того, некоторые компоненты цепи перемещаются по поверхности мембраны (пластоцианин, ферредоксин) или в ее толще (пластохиноны), связывая комплексы мембраны. Каждая фотосистема состоит из реакционного центра, светособирающего комплекса и переносчиков электронов. Реакционный центр включает хлорофилл-ловушку и первичный акцептор электронов. Фотосистемы отличаются по составу белков, пигментов и оптическим свойствам.

71. Дыхание роста и поддержания. Разделение дыхания на компоненты дает возможность выявить особенности использования ассимилятов у различных генотипов, более точно определить причины увеличения дыхательных расходов в онтогенезе растения и найти пути их уменьшения. Дыхание роста представляет собой ту часть темнового дыхания, которая обеспечивает энергией все звенья многоступенчатых цепей биохимических синтезов, в результате которых из конечных продуктов фотосинтеза и минеральных элементов создается новая структурная фитомасса растения. Дыхание поддержания включает энергию, необходимую для ресинтеза тех веществ, которые претерпевают обновление в процессе обмена веществ, а также для поддержания в клетках должной концентрации ионов и величины рН, сохранения внутриклеточного фонда метаболитов против градиента концентрации, поддержания функционально активного состояния структур.

Для разделения дыхания на составляющие применяют различные методы: расчетный, темновой, экстраполяционный; температурный и др.

Предполагается, что скорость синтеза структурного вещества растения пропорциональна интенсивности дыхания роста, определяемого как разность между суммарным дыханием и дыханием на поддержание. Последнее считается пропорциональным массе структурного вещества растения. Изменение содержания свободных ассимилятов рассчитывается как разность между поступлением свободных ассимилятов в процессе фотосинтеза и использованием их на процессы дыхания и синтеза структурного вещества.

На базе многочисленных экспериментальных данных было выведено уравнение расчета составляющих дыхания