Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 КУРС (ФИЗИОЛОГИЯ РАСТЕНИЙ) / Разобранные билеты физиология растений.docx
Скачиваний:
275
Добавлен:
16.12.2018
Размер:
5.34 Mб
Скачать

25.Фосфорилирование на уровне субстрата и фосфорилирование в дыхательной цепи.

Субстратное фосфорилирование — характерная для всех живых организмов реакция синтеза АТФ или ГТФ путём прямого переноса фосфата (PO3) на АДФ или ГДФ с высокоэнергетического промежуточного продукта. В ходе катаболического окисления органических соединений в живых клетках неорганический фосфат переносится на органическое вещество с образованием богатых энергией молекул, с которых он переносится на АДФ или ГДФ. При этом перенос может происходить только с молекул с достаточно высоким потенциалом переноса групп. Энергия гидролиза химических связей таких молекул должна быть выше чем энергия гидролиза АТФ, чтобы за счёт энергетического сопряжения обеспечить синтез АТФ из АДФ и Фн. К таким молекулам с высоким потенциалом переноса групп принадлежат фосфоенолпируват, 1,3-дифосфоглицерат, ацильные производные кофермента A и креатинфосфат.

Субстратное фосфорилирование служит для быстрой регенерации АТФ независимо от доступности акцепторов электронов для дыхательной цепи переноса, то есть в отсутствии кислорода. У человека в эритроцитах, полностью отсутствует аэробное дыхание и вся энергия генерируется исключительно за счёт субстратного фосфорилирования гликолиза. При недостатке кислорода мышцы также получают энергию именно по этому пути или за счёт креатинфосфата.

Также субстратное фосфорилирование способствует более полному использованию энергии окисляемых веществ. Без него часть энергии просто бы терялась, превращаясь в теплоту

Механизм. После фосфорилирования промежуточного продукта, его фосфатная группа (неорганический фосфат) переносится на АДФ. Поскольку потенциал передачи группы у промежуточного продукта выше, чем у АТФ реакция протекает в одном направлении.

Субстратному фосфорилированию часто предшествует стадия предварительного окисления. Если альдегидная группа окисляется до карбоксильной, энергия, высвобождаемая в этом процессе, используется на этерификацию фосфатной группы с карбоксильной. В результате образуется фосфоангидрид, соединения с высоким потенциалом переноса группы. В качестве альтернативы может окисляться молекула с кетогруппой (пируват и его окислительное декарбоксилирование). При этом энергия окисления сохраняется путём образования тиоэфирной связи с коферментом A. После переэтерификации с фосфатной группой образуется фосфосоединение с достаточно высоким потенциалом переноса группы, используемое для субстратного фосфорилирования.

Дыхательная цепь

Дыхательная цепь является частью процесса окислительного фосфорилирования (см. с. 126). Компоненты дыхательной цепи катализируют перенос электронов от НАДН + Н+ или восстановленного убихинона (QH2) на молекулярный кислород. Из-за большой разности окислительно-восстановительных потенциалов донора (НАДН + Н+ и, соответственно, QH2) и акцептора (О2) реакция является высокоэкзергонической (см. с. 24). Большая часть выделяющейся при этом энергии используется для создания градиента протонов (см. с. 128) и, наконец, для образования АТФ с помощью АТФ-синтазы.

А. Компоненты дыхательной цепи

Дыхательная цепь включает три белковых комплекса (комплексы I, III и IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-переносчики — убихинон (кофермент Q) и цитохром с. Сукцинатдегидрогеназа, принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза (см. с. 144) иногда называется комплексом V, хотя она не принимает участия в переносе электронов.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов, связанных с белками (см. сс. 108, 144). К ним принадлежат флавин [ФМН (FMN) или ФАД (FAD), в комплексах I и II], железо-серные центры (в I, II и III) и группы гема (в II, III и IV). Детальная структура большинства комплексов еще не установлена.

Электроны поступают в дыхательную цепь различными путями. При окислении НАДН + Н+ комплекс I переносит электроны через ФМН и Fe/S-центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальной дегидрогеназой через связанный с ферментом ФАДН2 или флавопротеин (см. с. 166), При этом окисленная форма кофермента Q восстанавливается в ароматический убигидрохинон. Последний переносит электроны в комплекс III, который поставляет их через два гема b, один Fe/S-центр и гем с1 на небольшой гемсодержащий белок цитохром с. Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра (CuA и CuB) и гемы а и а3, через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образуется сильный основной анион О2-, который связывает два протона и переходит а воду. Поток электронов сопряжен с образованным комплексами I, III и IV протонным градиентом.

Б. Организация дыхательной цепи

Перенос протонов комплексами I, III и IV протекает векторно из матрикса в межмембранное пространство. При переносе электронов в дыхательной цепи повышается концентрация ионов H+, т. е. понижается значение рН. В интактных митохондриях по существу только АТФ-синтаза (см. с. 144) позволяет осуществить обратное движение протонов в матрикс. На этом основано важное в регуляторном отношении сопряжение электронного переноса с образованием АТФ.

Как уже упоминалось, все комплексы с I по V интегрированы во внутренней мембране митохондрий, тем не менее обычно они не контактируют друг с другом, так как электроны переносятся убихиноном и цитохромом с. Убихинон благодаря неполярной боковой цепи свободно перемещается в мембране. Водорастворимый цитохром с находится на внешней стороне внутренней мембраны.

Окисление НАДН (NADH) комплексом I происходит на внутренней стороне мембраны, а также в матриксе, где происходит также цитратный цикл и β-окисление — самые важные источники НАДН. В матриксе протекают, кроме того, восстановление O2 и образование АТФ (ATP). Полученный АТФ переносится по механизму антипорта (против АДФ) в межмембранное пространство , откуда через порины проникает в цитоплазму.