Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора на 1 модуль.doc
Скачиваний:
11
Добавлен:
17.12.2018
Размер:
801.79 Кб
Скачать

1 Та 2. Технологічні особливості товстоплівкових мікросхем

Товстоплівкові мікросхеми являють собою гібридні схеми, пасивна частина яких (провідники і контактні площинки, резистори, конденсатори) створюється на основі плівок товщиною в десятки мікрометрів. Матеріалами для підкладки служать деякі види кераміки, які мають високі фізико – механічні показники.

Товстоплівкова технологія є високоекономічною, але із-за великого розкиду значень електричних параметрів, необхідно було ввести в технологічний процес операцію підгонки резисторів і конденсаторів.

Підгонка товстоплівкових резисторів заключається у видаленні частини їх матеріалу, в результаті чого їх опір зростає. Підгонка товстоплівкових конденсаторів пов’язана з видаленням частини верхньої обкладки, в результаті чого ємкість конденсаторів зменшується.

Спрощена схема технологічного процесу:

Рисунок 1 - Спрощена схема виготовлення плівкових елементів товстоплівкових ГІМС

В залежності від призначення пасти ділять на провідникові, резистивні, діелектричні для конденсаторів і діелектричні для ізоляції між шарами та пасти для поверхневого захисту. Для контактних площинок застосовують також спеціальні пасти, які не спікаються, але покращують подальший процес пайки.

Функціональними складовими пасти являються частинки неорганічних речовин (металів, окислів металів, солей які визначають основні властивості майбутніх елементів (провідників, резисторів, діелектриків). В процесі спікання шару ці частинки повинні залишатися в твердій фазі і рівномірно розподілятися по об’єму елементу.

Конструктивна складова – частинки скла з температурою плавлення нижче температури спікання (<600˚С). Склад конструкційної складової повинен забезпечувати адгезію до підкладки біля 100 МПа.

Технологічна складова необхідна для надання пасті друкарських властивостей ( паста повинна мати відповідну в’язкість ). В процесі спікання така складова ( ланолін, каніфоль, вазелінова олія ) повинна усуватися за рахунок розкладання.

В пастах для друкування провідників основним компонентом являється срібло, паладій, рідше – золото ( розмір частинок – декілька мікрометрів ). Співвідношення металевого порошку і конструкційної складової має значення ~ 9:1. В цих умовах має місце масовий ( суцільний ) контакт металевих частинок.

В технологічній собівартості товстоплівкових мікросхем вартість пасти на основі цінних металів може сягати 50%. В зв’язку з цим велика увага приділяється розробці пасти на основі неблагородних металів: алюмінію, міді, нікелю. Пасти на основі міді можна спікати, вони крім того, можуть підлягати пайці. Пасти на основі алюмінію і нікелю можна тільки спікати.

3. Трафаретний друк елементів

Принцип трафаретного друку заключається в продавлюванні пасти через відкриті ділянки трафаретної форми на підкладку. Ці ділянки відповідають рисунку топологічного шару мікросхеми.

Рисунок 2 - Схема контактного (а) та «безконтактного» (б) друку

1 - друкарський елемент форми; 2 - робочий ракель; 3 - паста; 4 – пробільний елемент форми; 5 - відбиток на підкладці; 6 – підкладка; 7 – зрошувальний ракель; 8 – технологічний зазор.

При контактному способі трафаретна форма виготовляється з берилієвої бронзи товщиною 0,05мм з нікелевим покриттям товщиною 10 – 15мкм.

Відкриті ділянки трафаретної форми з берилієвої бронзи мають сітчасту структуру, яка формується разом з контурами елементів методом фотолітографії. При цьому використовується два фотошаблона, один має зображення рисунка схеми, другий являє собою растр відповідної лініатури.

При виготовленні форм для «безконтактного» друку друкарський елемент являє собою сітку (металеву, поліефірну) а пробільний – сітку з фоторезистом (рис.3).

Рисунок 3- Друкарський елемент форми для «безконтактного» друку.

1- пробільний елемент; 2-друкарський елемент ; 3 - нитки сітчастої тканини.

Трафаретні форми на основі берилієвої бронзи забезпечують відтворення ліній шириною біля 70мкм. Тиражестійкість їх складає біля 1000 циклів друку.

Більш широке використання мають трафаретні форми на основі ситової тканини. Для відтворення провідників і резисторів часто використовують сито з неіржавіючої сталі марки 0040 ( з комірками ~ 40мкм ), яка має щільність ~ 120 ниток/см.

Робоча пластина ракеля виготовляється з еластичних матеріалів: поліефіруретанів, гуми. Кут нахилу робочої кромки ракеля до площини підкладки рекомендується вибирати в границях 50-70. Швидкість робочого ходу ракеля може складати 100 – 120 мм/с.

Як приклад, приведемо послідовність процесів формування шарів в мікросхемі з однорівневою розводкою, що має резистори і конденсатори (температура спікання пасти для провідників ~ 800, діелектриків ~700, резистивної пасти ~ 650 ):

1) друкування, сушка, спікання провідників і нижніх обкладинок конденсаторів;

2) друкування і сушка діелектрика ( один або два шари );

3) друкування і сушка верхніх обкладинок конденсаторів;

4) спільне ( сумісне ) спікання діелектрика і верхніх обкладинок конденсатора;

5) друкування, сушка і спікання резисторів.

Для різних паст максимальна температура сушки лежить в границях від 120 до 400, а час сушки від 20 до 80 хв. У відповідності з цим для сушки можна використовувати сушильні шафи ( періодичної дії ) або конвеєрні печі безперервної дії.

В залежності від складу пасти і призначення шару час спікання складає 1 – 2 години. Температурний цикл спікання можна умовно розділити на три етапи ( по мірі підвищення температури ):

1) розкладання та видалення нелетючих компонентів органічного зв'язуючого. На цьому етапі швидкість зростання температури ( від 300º до 400 ) повинна бути невисокою ( ~ 20/хв. ) для поступового вигоряння органічних речовин;

2) розм’якшення, а потім розплавлення скляного зв'язуючого. На цьому етапі швидкість підвищення температури складає 50 – 60 /хв;

3) початок хімічної взаємодії скла з поверхневим шаром кераміки, що забезпечує адгезію. Фізична взаємодія полягає в заповненні склом мікротріщин на поверхні, включаючи мікропори.

Для завершення формування спікання шар витримують при постійній температурі на протязі 10 – 20 хв., після чого поволі охолоджують щоб уникнути утворення тріщин через різницю температурних коефіцієнтів розширення шару і підкладки.

Температурний режим найпростіше можна реалізувати в печі конвеєрного типу безперервної дії, наприклад, печі СК – 10/16. 6 – 5. При тривалості циклу 60 хв. і розмірах підкладок 60×48 мм продуктивність печі складає 200 підкладок на годину.