Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ОСНОВЫ ТЕОРИИ ЯДЕРНЫХ РЕАКТОРОВ

.pdf
Скачиваний:
200
Добавлен:
06.03.2019
Размер:
5.45 Mб
Скачать

Тема 10. Температурные эффекты реактивности реактора

187

разогреве реактора от постороннего источника тепла (настолько медленном, чтобы средняя температура топлива успевала «вплотную» следовать за средней температурой теплоносителя).

Крутизна изменения кривых (t) и (t) при заданных размерах активной зоны реактора определяется только совокупностью материалов, из которых скомпонована активная зона. Причём определяется в большей степени поглощающими и диффузионными свойствами среды активной зоны, то есть практически

относительной насыщенностью активной зоны поглотителями тепловых нейтронов

(числом ядер сильных поглотителей тепловых нейтронов, приходящихся на одно ядро

235U) и относительной насыщенностью её замедляющими материалами (так как они в гетерогенном реакторе тоже определяют диффузионные свойства среды активной зоны). Чем больше активная зона насыщена поглотителями тепловых нейтронов, тем ниже значение при 20оС и тем более полого поднимается кривая (tт) с ростом температуры tт. Поэтому, варьируя соотношением топливных, поглощающих и замедляющих материалов активной зоны, можно подобрать форму кривой (tт), тем самым определяя в нужной степени и форму кривой реактора.

Величина определяется соотношением количеств резонансного поглотителя (главным образом, 238U) и замедлителя в активной зоне. То есть в реакторах АЭС, которым свойственно использование топлива низких обогащений, она больше зависит от рода и количества применяемого замедлителя, чем от величины обогащения топлива. Чем выше насыщенность активной зоны замедлителями, тем выше значение при 20оС и тем круче снижается с ростом температуры теплоносителя кривая (tт). Значит, и здесь есть возможность, варьируя величиной уран-водного отношения, задавать форму кривой (tт), влияющей на форму кривой ТЭР.

Наконец, поскольку величины и определяются не только температурой замедлителя-теплоносителя, но и температурой топлива, формы зависимостей (tт) и

(tт) должны зависеть ещё и от того, на какую топливную композицию рассчитывается реактор (высокотемпературную или низкотемпературную). Чем выше расчётная рабочая температура топлива, тем больше она отличается от средней температуры теплоносителя, и тем круче изгибается вниз зависимость (tт) за счёт действия эффекта Доплера в зоне разогрева и в зоне рабочих средних температур теплоносителя. И чем выше температура топлива, тем выше пойдёт кривая (tт) за счёт температурной разблокировки твэлов (то есть за счёт более резкого температурного уменьшения коэффициента экранировки F). Температурная зависимость произведения = f(t), как видно из рис.10.3, имеет максимум, положение которого в температурном интервале разогрева реактора по существу и определяет форму кривой ТЭР:

- если активная зона скомпонована из таких материалов, что максимум произведения = f(t) лежит намного правее 20 оС (во второй половине температурного интервала разогрева реактора), то такому реактору будет соответствовать кривая ТЭР I типа (произведение = f(t), величины kэ(t) и (t) вначале растут, достигая максимума, а затем снижаются но так, что при номинальной температуре теплоносителя они не опускаются до начальных своих значений при tт = 20оС);

- если реактор собран из таких материалов, что максимум зависимости = f(t) находится в первой половине интервала разогрева (практически ниже температуры 130

– 140оС), такому реактору будет свойственна кривая ТЭР II типа (произведение = f(t), величины kэ(t) и (t) вначале растут, достигая максимума, а затем снижаются но так, что при номинальной рабочей температуре теплоносителя они падают ниже начальных своих значений при tт = 20оС);

- если подбор материалов активной зоны реактора таков, что максимум

188

Тема 10. Температурные эффекты реактивности реактора

зависимости = f(t) отсутствует, этот реактор будет обладать температурной характеристикой реактивности III типа – кривой ТЭР, монотонно убывающей во всём интервале средних температур теплоносителя.

Конечно, такой ответ на вопрос о факторах, определяющих форму кривой ТЭР, не блещет инженерной определённостью. Для конструктора нужны более однозначные сведения: из каких материалов, с какими их свойствами, в каких их соотношениях и как строить активную зону реактора с оптимальной кривой ТЭР, с отрицательным ТКР нужной величины в зоне рабочих температур.

Эксплуатационника больше волнуют вопросы:

-Как меняется форма кривой ТЭР и величина ТКР в процессе кампании?

-В какую сторону в процессе кампании меняется величина ТКР? (с подтекстом: надо ли ждать опасного уменьшения абсолютной величины ТКР или, того хуже, изменения знака величины ТКР на положительный?).

-Какими средствами можно в условиях нормальной эксплуатации воздействовать на величину ТКР, чтобы поддерживать её в оптимальных пределах?

10.4.Условные составляющие ТЭР и ТКР

10.4.1.Плотностная и ядерная составляющие ТЭР. Величина ТЭР, как

отмечалось, является сложной комбинацией температурных зависимостей , , , , В2, т, L2. Каждая из этих величин является в конечном счёте сложной функцией различных макроскопических сечений компонентов активной зоны реактора по отношению к быстрым, замедляющимся и тепловым нейтронам. Следовательно, суммарная температурная зависимость реактивности реактора (= ТЭР) в конечном счёте определяется сложной совокупностью температурных зависимостей макросечений компонентов активной зоны.

Но величина любого макросечения есть произведение соответствующего эффективного микросечения на величину ядерной концентрации компонента, следовательно

i

(t) i

(t) N

(t) i

(t)

N A

 

 

(t)

 

i

j

j

i

j

 

A

 

 

 

 

 

 

 

 

совокупная температурная зависимость реактивности реактора от температуры сводится к совокупности температурных зависимостей величин различных микросечений (характеристик ядерных свойств среды активной зоны) и температурных зависимостей плотностных свойств материалов активной зоны.

В таком представлении, используя известный математический приём, полную величину ТЭР при любой рассматриваемой температуре можно разделить на две условные составляющие:

t (t) [ i (t)]

 

 

 

i

[ ij (t)]

 

 

 

i idem

(10.4.1)

 

 

 

 

 

 

 

 

j idem

 

 

 

 

 

Первая составляющая ТЭР, а именно:

Изменение реактивности реактора при его разогреве от 20оС до рассматриваемой температуры t, обусловленное температурным изменением плотности материалов активной зоны, взятое при условии независимости от температуры величин микросечений компонентов активной зоны, называют плотностной составляющей температурного эффекта или просто - плотностным ТЭР (кратко – ПТЭР, обозначение - t

).

Вторая составляющая – наоборот:

Изменение реактивности реактора при его разогреве от 20оС до рассматриваемой температуры t, обусловленное температурным изменением микросечений компонентов активной зоны, взятое при условии

Тема 10. Температурные эффекты реактивности реактора

189

независимости от температуры величин плотностей материалов активной зоны, называют ядерной составляющей температурного эффекта или просто - ядерным ТЭР (кратко – ЯТЭР, обозначение t ).

То есть

 

(t) (t) (t).

(10.4.2)

 

t

t

t

 

Точно так же можно рассуждать и величине температурного коэффициента реактивности и представить его в виде суммы аналогичных условных составляющих:

 

(t) (t) (t).

(10.4.3)

t

t

t

 

Подчеркнём ещё раз: обе составляющие ТЭР (ТКР) являются условными. Ибо невозможно себе представить, разогрев реактора приводил только к температурному изменению плотности его материалов, не затрагивая при этом величин микросечений, или, наоборот, - к избирательному температурному изменению величин микросечений компонентов без температурных изменений плотности материалов реактора. Так не бывает, и оба канала температурного влияния на реактивность реактора действуют

всегда вместе и синхронно.

Практическая полезность разделения ТЭР (ТКР) на плотностную и ядерную составляющие состоит в том, что вычисление величин каждой из них для конкретного реактора при любой температуре – намного проще и выполняется с существенно меньшими затратами вычислительного труда, чем расчёт всего ТЭР (ТКР) в целом.

Однако, использование этого приёма даёт пищу для анализа и инженеруэксплуатационнику реакторной установки.

10.4.2. Условия преимущественного проявления ПТЭР и ЯТЭР в реакторе.

Несмотря на замечание о невозможности раздельного проявления ПТЭР и ЯТЭР, в практике эксплуатации энергетического реактора могут иногда создаваться условия, когда составляющие ТЭР проявляются одиночным порядком - если и не в чистом виде, то, по крайней мере, преимущественно.

Для того, чтобы понять, о чём идёт речь, надо вначале чётко себе уяснить, что плотностная составляющая ТЭР в ВВЭР практически полностью определяется присутствием в активной зоне воды (остальные материалы активной зоны – твёрдые вещества, у которых величины объёмных температурных коэффициентов расширения, по крайней мере, на три порядка меньше, чем у воды; поэтому температурное уменьшение плотности всех материалов, кроме воды, столь мало, что может вообще не приниматься во внимание). Более того, ядерная составляющая ТЭР от присутствия воды в активной зоне должна быть очень мала, так как стандартное микросечение поглощения воды на три порядка величины меньше, чем микросечение поглощения урана-235 (0.66 и 680.9 барн соответственно). Следовательно, при одинаковом разогреве топлива и воды в ВВЭР абсолютный вклад воды в температурное изменение поглощающей способности всей активной зоны останется примерно на три порядка меньшим, чем вклад топлива. А если учесть, что в энергетическом реакторе топливо изменяет свою температуру в существенно более широких пределах, чем вода, то в действительных условиях относительный вклад воды в ядерную составляющую ТЭР будет ещё меньшим, чем при одинаковом разогреве топлива и воды. Сечения поглощения воды по отношению к быстрым и резонансным нейтронам от температуры практически не зависят, как почти не зависят и величины микросечений рассеяния.

Вот и получается, что плотностной ТЭР в ВВЭР практически полностью определяется присутствием в активной зоне воды. Это касается не только ВВЭР, но и реакторов типа РБМК, поскольку и в них вода является единственным веществом в активной зоне, которое с температурой существенным образом изменяет свою плотность.

Ядерный ТЭР, наоборот, в силу указанных причин связан, главным образом, с наличием в активной зоне топлива: температурное изменение поглощающей

190

Тема 10. Температурные эффекты реактивности реактора

способности активной зоны по отношению к тепловым нейтронам более всего определяется температурным изменением величин микросечений поглощения урана235, плутония-239 и некоторыми сильно поглощающими тепловые нейтронами продуктами деления (135Хе, 149Sm), которые в процессе работы реактора удерживаются внутри твэлов, то есть вместе с топливом; эффективные микросечения захвата замедляющихся (в том числе и резонансных) нейтронов также определяются величиной температуры топливной композиции и практически не связаны с температурой воды.

Поэтому в процессе медленного (со скоростью не выше 10оС/час) разогрева реактора от постороннего источника тепла, когда средняя температура топлива практически «градус в градус» следует за медленно возрастающей средней температурой теплоносителя, а реактор поддерживается в состоянии критичности на минимально контролируемом уровне мощности ( 10-4 10-3 % Npном), то есть когда «ядерного» тепла практически нет, - в таких условиях измеренная величина температурного эффекта реактивности при любой средней температуре теплоносителя будет представлять собой практически одну плотностную составляющую ТЭР. (Забегая вперёд, стоит отметить, что методика экспериментального измерения температурного коэффициента реактивности теплоносителя перед вводом реактора в кампанию основана на создании именно таких условий для физических измерений).

При изменениях же уровня мощности реактора типа ВВЭР, разогретого до номинальной средней температуры теплоносителя, наоборот, практически «в чистом виде» имеет место проявление ядерной составляющей ТЭР, так как величина средней температуры теплоносителя при маневрах мощности реактора практически не изменяется (или, если изменяется, то очень незначительно). Так как средняя температура теплоносителя остаётся практически постоянной, то практически постоянной остаётся и средняя величина плотности воды, а при нулевом изменении плотности воды нулевым будет и плотностное изменение реактивности ВВЭР. А,

значит, полное температурное изменение реактивности реактора буде практически целиком определяться ядерной составляющей ТЭР, которая имеет место вследствие изменений средней температуры топлива при изменениях тепловой мощности реактора. Ибо изменение тепловой мощности реактора при постоянстве величины расхода теплоносителя возможно только за счёт изменения температурного напора от топлива к ядру потока теплоносителя:

N p k F t k F (tтк tтн ),

то есть при постоянстве средней температуры теплоносителя tтн - только за счёт изменения средней температуры топливной композиции tтк в твэлах реактора.

Отсюда следует, между прочим, важный для оператора вывод:

Величины ядерного ТКР, экспериментально измеренные у конкретного реактора на разных уровнях мощности даже при одинаковой средней температуре теплоносителя, будут различными.

Объясняется это просто. Во-первых, каждому уровню тепловой мощности реактора даже при постоянном расходе теплоносителя и даже при постоянной средней температуре теплоносителя соответствует своё значение средней температуры топливной композиции. Во-вторых, при определяемом законом теплопроводности распределении температур по радиусу твэла различные компоненты топливной композиции по-разному изменяют с каждым градусом изменения температуры

величины своих микросечения поглощения (235U и 239Pu, в отличие от 238U, не подчиняются закону «1/v» и отклоняются от этого закона в разные стороны и в различной степени, вследствие чего величина среднего эффективного выхода

Тема 10. Температурные эффекты реактивности реактора

191

нейтронов деления с ростом температуры топлива уменьшается всё более и более резко). В-третьих, Доплер-эффект с ростом температуры топливной композиции влияет на величину вероятности избежания резонансного захвата всё более и более сильно, и характер температурного уменьшения получается тоже нелинейным.

Второй вывод тоже не из приятных:

Отрицательная величина ядерного ТКР изменяется в процессе кампании.

Поэтому обоснованным является опасение, как бы столь важная характеристика реактора, как отрицательный ядерный ТКР (основа общего отрицательного ТКР = основа устойчивости работы реактора на мощности) не «выскочила» бы за пределы, гарантирующие устойчивость реактора. Сказанное вынуждает эксплуатационников:

-регулярно проводить физические измерения с целью проверки действительной величины отрицательного ТКР на данный момент кампании;

-искать новые корректные методики экспериментального определения величины ТКР в рабочих условиях (далее увидим, что существующие методики далеки от совершенства).

10.5. Мощностной ТЭР (ТКР) реактора

Энергетический реактор, хотя и может служить объектом для множества академических рассуждений по поводу некоторых его физических характеристик, создаётся для более утилитарной цели – получения энергии.

Поэтому, хотя эксплуатирующим его людям небезразличны теоретические головоломки, служащие «предметом трепетных раздумий» для теоретиков и проектантов, степень интереса у них к теории совсем не та, что у проектантов. Добровольный интерес эксплуатационника к теории обусловлен не только естественным стремлением к глубокой эрудиции. Он подогревается желанием проникнуть в замыслы создателей эксплуатируемого ими реактора для того, чтобы в них найти ответы на естественные прагматические вопросы типа: почему это сделано так, а не иначе? какой в этом смысл, и какой от этого выигрыш?

И это понятно: эксплуатационник в процессе своей работы обязан думать о более практических вещах – о режимах работы, параметрах и характеристиках, о безопасности и эффективности и т.п. И чем меньшим числом устойчивых в процессе кампании рабочих характеристик обеспечивается безопасная эксплуатация реактора, тем проще работа оператора реакторной установки, поскольку неизменные при эксплуатации характеристики требуют меньшего объёма контроля с его (оператора) стороны. В полном соответствии с известным философским принципом Оккама: не изобретай новых сущностей, если можно обойтись без них.

Но вернёмся к температурному эффекту. Если уж есть такой феномен и если он так важен, есть смысл задуматься над вопросом: в каких случаях жизни ТЭР действительно важен?

Во-первых, ТЭР важен не столько при разогреве реактора (хотя и это нельзя игнорировать), сколько при работе реактора в энергетических режимах, так как именно в них величина отрицательного ТКР обеспечивает нужные устойчивость и регулируемость реактора. Во-вторых, важные для нас температурные изменения реактивности в работающем реакторе и возникают, по сути дела, именно при изменениях уровня мощности реактора. Поэтому для эксплуатационника было бы вполне достаточным (и намного более простым) иметь только одну рабочую характеристику реактора – зависимость реактивности от тепловой мощности = f(Np). Такая характеристика действительно имеется. Аналогично определению ТЭР:

192

Тема 10. Температурные эффекты реактивности реактора

Мощностным эффектом реактивности реактора на данном уровне его мощности (Np) называют величину изменения реактивности, возникающего в разогретом до номинальной средней температуры теплоносителя реакторе вследствие подъёма его тепловой мощности от 0 (от МКУМ) до данного уровня Np.

И аналогично определению ТКР:

Мощностным коэффициентом реактивности реактора на данном уровне его тепловой мощности называется изменение реактивности в разогретом до номинальной средней температуры теплоносителя реакторе при подъёме его тепловой мощности на 1 МВт сверх данного уровня.

МЭР и МКР обозначаются соответственно N (N p ) и N (N p ) и измеряются

соответственно в % и %/МВт. Они (как и ТЭР с ТКР) представляют собой интегральную и дифференциальную меры влияния мощности реактора на его реактивность и взаимосвязаны аналогичными зависимостями:

N (N p ) NN , (10.5.1)

p

N p

 

и N (N p ) N (N p ) dN p .

(10.5.2)

0

 

Хотя мощностной эффект (и коэффициент) реактивности имеют своё специфическое название и обозначение, не будем забывать, что их происхождение –

температурное. По существу, это – определяемая температурой топлива доплеровская составляющая температурного изменения реактивности, но поставленная в соответствие не температуре топлива, а другому аргументу – тепловой мощности реактора. При неизменной средней номинальной температуре теплоносителя изменение мощности приводит к изменению средней температуры топливной композиции. Последнее воздействует на размножающие свойства реактора, главным образом, через доплеровское изменение величины (вероятности избежания резонансного захвата замедляющихся нейтронов). Изменение с температурой топлива величины коэффициента использования тепловых нейтронов хотя и имеет место, но оно меньше Доплер-эффекта примерно на два порядка величины, поскольку оно определяется не столько температурой топлива, сколько температурой нейтронов, которая, в свою очередь, зависит не столько от температуры топлива, сколько от средней температуры замедлителя-теплоносителя в ВВЭР. Вот почему мощностное температурное изменение реактивности реактора часто называют доплеровским.

И ещё об одном распространённом названии. МЭР (МКР) определяются самой динамично изменяющейся температурой в реакторе – температурой топлива, и мощностное изменение реактивности в реакторе происходит безынерционно, практически отслеживая без запаздывания величину мощности и величину средней температуры топлива. Поэтому МКР часто называют быстрым мощностным коэффициентом реактивности. Это делается в тех случаях, когда требуется отличить чисто мощностное изменение реактивности от полного изменения реактивности, вызываемого изменением мощности реактора и дополняемого (с некоторым запаздыванием) изменением реактивности, обусловленным изменением средней температуры теплоносителя.

Расчёт мощностных изменений реактивности реактора производится по стереотипной формуле:

Тема 10. Температурные эффекты реактивности реактора

193

N N N p N (N p 2 N p1 ) ,

(10.5.3)

в которую величины мощности подставляются в МВт, а величина МКР извлекается из располагаемой оператором рабочей документации.

При этом следует иметь в виду, что МКР – величина не постоянная, а зависящая от уровня мощности реактора, поэтому в (10.5.3) подставляется среднее в интервале изменения мощности значение МКР. Это значение находится следующим образом.

Оператор из рабочей документации (из графиков или таблиц) может без особых затруднений извлечь достоверное на данный момент кампании значение МКР на

номинальном (100%-ном) уровне мощности реактора - 100N . На нулевом уровне

мощности величина МКР меньше указанной величины, но она не равна нулю, а составляет приблизительно третью часть от величины МКР на полной мощности реактора. Полагая, что в интервале от 0 до номинальной мощности текущее значениеN возрастает по линейному закону (а это практически так и есть), величина МКР на исходном уровне мощности (Np1) найдётся как

 

 

 

 

 

 

 

 

 

 

 

 

 

100

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

0

 

 

 

 

N

 

 

 

100

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

N p1

 

 

 

 

 

 

 

 

 

 

N

3

 

 

 

 

 

 

 

 

 

 

 

 

)

N

 

N

N

 

0

 

N

 

 

 

N

 

 

100

 

 

N .

 

(N

 

 

 

 

 

 

 

 

N

p1

 

 

 

p1

 

 

p1

 

 

 

 

 

 

 

 

100

 

 

N

 

100

 

 

 

 

3

 

3

N

 

100

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично величина МКР на конечном уровне мощности Np2:

 

 

 

 

)

2

100

 

N p 2

 

100

N

(N

p 2

 

 

N ,

 

 

 

 

 

3

N

 

100

 

3

 

 

 

 

 

 

 

 

и поэтому среднее значение МКР в интервале изменения мощности (Np1, Np2):

 

 

 

 

 

N

(N

p1

)

N

(N

p 2

)

 

1

N

p1

N

p 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

N .

(10.5.4)

 

 

 

 

2

 

 

 

 

3

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*) Здесь значения уровней мощности Np1 и Np2 подставляются в % Npном.

Таким образом, для того, чтобы рассчитать изменение реактивности за счёт изменения уровня мощности реактора от Np1 до Np2 в данный момент кампании, для расчёта среднего значения МКР требуется извлечь из рабочей документации только достоверное на этот момент кампании значение МКР на номинальной мощности реактора. Удобнее всего для этой цели пользоваться имеющимся в распоряжении оператора рассчитанным графиком, качественный вид которого показан на рис.10.4.

N, %/МВт

50

100

150

200

250

300 W, эф.сут.

0

-3 . 10-4

-6 . 10-4

Рис.10.4. Величина МКР реактора на номинальной мощности в различные моменты кампании.

Из сказанного эксплуатационнику полезно взять на заметку следующее.

1. С точки зрения устойчивости работы реактора на мощности сказанное ранее об условии обеспечения этой устойчивости полностью касается и МКР: в разогретом до номинальной температуры реакторе мощностной коэффициент реактивности должен

194

Тема 10. Температурные эффекты реактивности реактора

быть обязательно отрицательным.

2.Абсолютная величина МКР на малых уровнях мощности реактора всегда меньше, чем на больших мощностях. Это значит, что с ростом мощности реактора его устойчивость растёт. И опасаться недостаточно устойчивой работы реактора следует именно на МКУМ и малых уровнях мощности.

3.В процессе кампании величина отрицательного МКР реактора монотонно увеличивается. Следовательно, снижения устойчивости реактора в процессе кампании можно не опасаться.

Итак, «всё хорошо под сиянием лунным…» - есть возможность просто учитывать изменения реактивности от более практичной величины – мощности реактора, и о чисто температурных изменениях реактивности, связанных с изменением трудноконтролируемой температуры топлива эксплуатационнику можно было бы совсем забыть. Но как быть с теми изменениями реактивности, которые обусловлены изменением средней температуры воды?

10.6. ТЭР и ТКР теплоносителя

Во всём диапазоне изменений средней температуры теплоносителя – от 20оС до наибольшей температуры рабочей зоны – изменение реактивности ВВЭР происходит за счёт изменений ядерных свойств теплоносителя (микросечений поглощения воды и содержащейся в ней борной кислоты) и изменений плотности воды, которые, кстати имеют место не только с изменением температуры воды, но и давления в реакторе.

Ранее (п.10.4.2) упоминалось, что законы передачи тепла от топлива к теплоносителю на разных уровнях мощности реактора ставят в более или менее жёсткое соответствие величины средних температур топлива и теплоносителя:

N p k F t k F (tтк tтн ) .

Следовательно, соотношение мощности и средней температуры теплоносителя

N p

 

 

 

 

 

 

 

 

 

 

t

 

 

k F (

тк

1)

 

 

 

 

 

 

 

 

 

 

tтн

 

 

 

tтн

 

определяется в конкретном реакторе соотношением средних температур топливной композиции и теплоносителя ( tтк / tтн ), которое опять-таки определяется только

тепловой мощностью реактора. А, значит, величину полного ТЭР (ТКР) реактора принципиально можно было бы поставить в соответствие с величиной уровня мощности. Чего, к сожалению, не получается, потому что:

-во-первых, одна и та же величина тепловой мощности реактора

N p Gтн с р тн (tтнвых tтнвх )

может обеспечиваться при различных комбинациях расходов теплоносителя Gтн и подогревов его в активной зоне ( tтн tтнвых tтнвх ), а, значит, в этих комбинациях (учитывая нелинейный характер роста температуры теплоносителя от входа к выходу

активной

зоны) будет меняться и средняя температура теплоносителя

 

 

 

0.5(t вх

t вых ) , не говоря уже о среднеэффективной температуре активной зоны;

t

тн

 

 

тн

тн

- во-вторых, величины средних температур топлива и теплоносителя зависят от характера распределения энерговыделения по высоте реактора, а, значит, и от характера вертикальной составляющей нейтронного поля в активной зоне (а это – довольно изменчивая в процессе кампании характеристика).

Именно эта неоднозначность зависимости (Np), её изменчивость в различных условиях эксплуатации реактора вынуждает пользоваться в физических расчётах различными составляющими ТЭР (ТКР). Потребность в расчётах при различных

Тема 10. Температурные эффекты реактивности реактора

195

расходах теплоносителя, при различных средних температурах теплоносителя и в различные моменты кампании активной зоны диктует потребность в точном знании таких составляющих ТЭР (ТКР), которые можно было бы корректно измерить в рабочих условиях эксплуатации реактора.

С этой целью весь ТЭР (ТКР) ВВЭР с высокотемпературным топливом делят на две материальные составляющие - ТЭР (ТКР) топлива и ТЭР (ТКР) теплоносителя.

Температурный эффект топлива проявляется при температурах топлива, существенно превышающих величины средних температур теплоносителя, что в условиях реальной эксплуатации ВВЭР имеет место при работе реактора на мощности. Поэтому учитывать изменения реактивности, обусловленные только температурой топлива, во всех отношениях удобнее не как функцию изменения средней температуры топлива (последнюю рассчитывать достаточно непросто), а как функцию изменения величины мощности реактора. То есть как мощностные изменения реактивности, о чём говорилось в п.10.5.

Температурный эффект теплоносителя проявляется при разогреве теплоносителя от 20оС вплоть до самых больших средних его температур. Теоретически он действует независимо от температурного эффекта топлива, если в процессе разогрева теплоносителя сохраняется неизменной средняя температура топлива. При реальной эксплуатации реактора его действие можно проследить и зафиксировать в процессе очень медленного разогрева критического на МКУМ реактора от постороннего источника тепла. Именно так производится измерение

температурного коэффициента реактивности теплоносителя: разогрев со скоростью не более 10оС/час при поддержании реактора на МКУМ гарантирует непревышение средней температуры топлива над средней температурой теплоносителя и практически нулевое мощностное изменение реактивности реактора.

Температурный коэффициент реактивности теплоносителя ( t) в наиболее важном интервале средних температур теплоносителя – выше 278оС – отрицателен и с ростом температуры увеличивается по абсолютной величине приблизительно по линейному закону (рис.10.5).

t, %/оС

275

280

285

290

295

300

0

t,o

-0.010

-0.015

-0.020

-0.025

Рис. 10.5. Зависимость ТКР теплоносителя ВВЭР-1000 в интервале температур 275 – 300оС.

До температуры 279 – 280оС разогрев ВВЭР-1000 обеспечивается за счёт джоулева тепла от работающих ГЦН. Выше этой температуры реактор разогревается собственным («ядерным») теплом. Поэтому экспериментально в начале кампании определяется минимальная величина ТКР теплоносителя именно при этой температуре.

В распоряжении оператора всегда имеется расчётная кривая ТКР теплоносителя

при номинальной средней температуре теплоносителя в различные моменты кампании (в зависимости от величины энерговыработки W), качественный вид которой

196

Тема 10.

Температурные эффекты реактивности реактора

 

показан на рис.10.6.

 

 

 

 

 

 

,% / o C

50

100

150

200

250

300 W, эф.сут

t

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

-0.02

-0.04

-0.06

Рис.10.6. Изменение ТКР теплоносителя при номинальной средней температуре в процессе кампании.

Таким образом, совместное изменение реактивности за счёт изменений мощности реактора и средней температуры теплоносителя (в пределах указанного интервала) найдётся как

N t

 

N (N p2 N p1 )

 

 

 

 

 

(10.6.1)

 

 

 

 

 

 

 

 

t (tтн 2 tтн1 ).

Для получения корректных результатов расчёта значения МКР и ТКР теплоносителя желательно усреднять для интервалов изменения мощности реактора и средней температуры теплоносителя соответственно.