Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика ответы на 2 семестр.doc
Скачиваний:
41
Добавлен:
17.04.2019
Размер:
3.19 Mб
Скачать

4. Линии напряженности. Поток вектора напряженности.

Электрическое поле задается указанием для каждой точки величины и направления вектора Е. Совокупность этих векторов образует поле вектора напряженности электрического поля. В гидродинамике поле вектора скорости, например, можно представить очень наглядно с помощью линий тока. Аналогично электрическое поле можно описать с помощью линий напряженности, которые называются сокращенно линиями Е.

На линии напряженности касательная к ней в каждой точке паралеьна вектору Е. Густота линий выбирается так, чтобы количество линий, пронизывающих единицу поверхности площадки, перпендикулярной к линиям, было равно численному значению модуля вектора Е. Тогда по картине линий напряженности можно судить о направлении и величине вектора Е в разных точках пространства (рис. 7).

Рис. 7.

Число линий на любом расстоянии от заряда будет одно и то же. Следовательно, линии нигде, кроме заряда, не начинаются и не заканчиваются. Это свойство линий Е является общим для всех электростатических полей, создаваемых любой системой неподвижных зарядов: линии напряженности могут начинаться или заканчиваться лишь на зарядах, либо уходить в бесконечность.

Изменение направления нормали на противоположное изменяет знак у En, а следовательно, и знак у потока Ф. В случае замкнутых поверхностей принято вычислять поток, выходящий

Рис. 8.

из охватываемой поверхностью области наружу. Поэтому под нормалью к dS в дальнейшем будет всегда подразумеваться обращенная наружу, т. е. внешняя, нормаль. В тех местах, где вектор Е направлен наружу (т. е. линия Е выходит из объема, охватываемого поверхностью), Еn и соответственно dФ будут положительны; в тех же местах, где вектор Е направлен внутрь (т. е. линия Е входит в объем, охватываемый поверхностью), Еn и dФ будут отрицательны (рис.8.).

5.Теорема Гаусса. Независимость потока от поверхности. Доказательство теоремы.

Независимость потока от поверхности. Покажем, что и для поверхности любой другой формы, если она замкнута и заключает внутри себя точечный заряд q, поток вектора Е также будет равен . Для поверхности, не имеющей «морщин» (рис. 10,а), это утверждение очевидно. Действительно, такая поверхность, как и поверхность сферы, пересекается каждой

Рис. 10.

линией Е только один раз. Поэтому число пересечений равно количеству линий, выходящих из заряда, т. е. . При вычислении потока через поверхность с «морщинами» (на рис. 10,6 показана только одна из линий Е) нужно учесть, что число пересечений данной линии с поверхностью может быть в рассматриваемом случае только нечетным, причем эти пересечения будут вносить в общий поток попеременно то положительный, то отрицательный вклад. То есть, сколько бы раз данная линия не пересекала поверхность, результирующий вклад в поток будет равен либо плюс единице (для линии, выходящей в конечном счете наружу), либо минус единице (для линии, входящей внутрь). Таким образом, какова бы ни была форма замкнутой поверхности, охватывающей точечный заряд q, поток вектора Е сквозь эту поверхность оказывается равным .

Пусть внутри некоторой замкнутой поверхности заключено несколько точечных зарядов произвольных знаков: q1, q2 и т. д. Поток вектора Е по определению равен

(16)

(кружок у знака интеграла указывает на то, что интегрирование производится по замкнутой поверхности). В силу принципа суперпозиции полей

(17)

Подставив (17) в выражение для потока, получим

где – нормальная составляющая напряженности поля, создаваемого i-м зарядом в отдельности. Последняя перестановка операции суммирования и интегрирования возможна, так как i относится к нумерации зарядов, интегрирование ведется по произвольной поверхности.

Выше было показано:

Следовательно,

(18)

Это утверждение носит название теоремы Гаусса. Теорема может быть сформулирована следующим образом: поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на  0.

Рис. 11.

В частности, если внутри поверхности заряды отсутствуют, поток равен нулю. В этом случае каждая линия напряженности поля (создаваемого зарядами, расположенными вне поверхности) пересекает поверхность четное число раз, выходя наружу столько же раз, сколько и входя внутрь (рис. 11). В итоге вклад, вносимый в поток каждой из линий, будет равен нулю. Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью , теорема Гаусса должна быть записана следующим образом:

(19)

где интеграл справа берется по объему V, охватываемому поверхностью S.