Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika.docx
Скачиваний:
1
Добавлен:
26.04.2019
Размер:
371.88 Кб
Скачать

Механика – наз-ся раздел физики, изучающий закономерности взаимодействия простейших форм движения материи.

Материальная точка – это тело размерами которого в процессе движения можно пренебречь. Возможность рассматривать тело как материальную точку зависит не от самого тела, а от характера его движения. Например, при движении Земли вокруг солнца Землю можно считать мат.точкой, если же нас интересует суточное вращение Земли – то нельзя.

Система отсчёта – это тело или совокупность тел, по отношению к которым рассматривается движение других тел. С.О. состоит из тел отсчета, связанной с ним системой координат и прибором для измерения времени (часы).

Радиус-вектор – вектор(r), харак-щий изм-е положения точки за рассм-ый промежуток t.

Система координат – а) если тело движется вдоль прямой линии, то его движение определяется 1 координатой

б) при движении в нек. плоскости:2 координаты

в) при движении в пространстве: 3 координаты

Средняя скорость мат. точки за время dt наз-ся отношение ее перемещения к интервалу t:Vср = dS/d t.

Мгновенная скорость   тела — скорость тела в данный момент времени (или в данной точке траектории). Она равна пределу, к которому стремится средняя скорость за бесконечно малый промежуток

времени  .

Здесь   — производная от радиуса-вектора по времени.

Мгновенное ускорение – это предел к которому стремится среднее ускорение за бесконечно малый промежуток времени.

В СИ единицей ускорения является метр на секунду в квадрате (м/с2).

Криволинейное движение – движение мат.точек, траектории которых представляют собой не прямые, а кривые линии.

 

частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной  и тангенциальной  составляющих:

,

 - нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости,   r – радиус кривизна траектории в данной точке.

 - тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

.

Кроме центростремительного ускорения, важнейшими характе­ристиками равномерного движения по окружности являются период и частота обращения.

Равномерное движение по окружности.

Пройденный путь S , перемещение dr, скорость v , тангенциальное и нормальное ускорение at, и an, представляют собой линейные величины. Для описания криволинейного движения наряду с ними можно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота φ вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота φ является скаляром, бесконечно малый поворот dφ — векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то ω=const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2π, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

. (1.16)

Число оборотов в единицу времени есть величина, обратная периоду, — циклическая частота вращения

ν =1/T. (1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dφ. Подставив его в (1.15), находим

v = ωr. (1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы ω и v, следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

. (1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение — производная по времени от вектора угловой скорости ω (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18),(1.12) и (1.13), получаем

at = β·R, a =ω2·R. 9 (1.20)

Таким образом, для полного ускорения имеем

. (1.21)

Величина β играет роль тангенциального ускорения: если β = 0.полное ускорение при вращении точки не равно нулю, a =R·ω2 ≠ 0.

Законы Ньютона

Законы Ньютона образуют основу динамики — раздела механики, рассматривающего взаимодействие тел.

Первый закон Ньютона отражает свойство инерции, тел и часто называется законом инерции. Он утверждает, что всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Ясно, во-первых, что этот закон выполняется только в инерциальных системах отсчета. Во-вторых, отсюда следует важное заключение, что, поскольку изменение состояния покоя или равномерного движения связано с наличием в системе ускорения, последнее, в свою очередь, возникает как результат воздействия других тел.

Это утверждение создает предпосылки для формулирования второго закона Ньютона.

Воздействие одного физического тела на другое характеризуется физической величиной, называемой силой. Сила, действующая на тело, сообщает ему ускорение. Величина полученного ускорения пропорциональна приложенной силе. Но разные тела под влиянием одинаковых сил приобретают разные ускорения. Данный опытный факт есть проявление уже упоминавшегося свойства инерции тела. Это свойство количественно характеризуется инертной массой тела — коэффициентом пропорциональности между приложенной к телу силой и полученным им ускорением.

Таким образом, второй закон Ньютона может быть записан в форме:

,

где фигурируют вновь введенные физические величины: вектор силы F и инертная масса тела m. В таком виде его можно сформулировать следующим образом: ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.

Грав. масса - характеризует способность тел притягиваться друг к другу, но так как вблизи поверхности Земли все тела испытывают земное притяжение, то ускорение любого тела равно g, поэтому мы инертную массу приравниваем к гравитационной и говорим об одной и той же массе.

А различают гравитационную и инертную массу, потому что упоминается масса в двух разных законах Ньютона ( F=ma и F = Gm1m2/r^2), где в первом случае учитываются инертные свойства массы, а во втором гравитационные свойства массы.

Третий закон Ньютона имеет дело со взаимодействующими, телами.

F12 = F21 m1a1=-m2a2 F1=-F2

О н утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам.

Законы Кепплера:

  1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

  2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые планеты.

  3. Квадраты периодов обращения планет вокруг солнца, относятся как кубы больших полуосей их орбит.

Работа. Вычисление работы.

Если на тело (материальную точку) действует постоянная сила , составляющая постоянный угол с перемещением тела , то работа этой силы определяется как произведение модулей силы и перемещения на косинус угла между векторами силы и перемещения, т. е. как скалярное произведение вектора силы на вектор перемещения: Единица работы в СИ - Дж - равна работе, совершаемой силой в 1 Н на перемещении 1 м вдоль направления действия силы.

Если на тело действует переменная сила, то, чтобы вычислить ее работу, нужно перемещение разбить на малые участки и найти сначала элементарную работу: а затем полную работу как предел суммы элементарных работ: Графически работа определяется по площади криволинейной трапеции. На оси абсцисс откладывают в определенном масштабе модули перемещения, на оси ординат проекции силы (также в соответствующем масштабе). Тогда площадь трапеции численно равна работе силы.

Работа сил тяжести:

Работа сил трения:

Кинетическая энергия

Про тела, которые могут совершать работу, говорят, что они обладают энергией. Энергией называют скалярную физическую величину, показывающую, какую работу может совершить тело. Энергия равна той максимальной работе, которую тело может совершить в данных условиях. Механическая работа является мерой изменения энергии в различных процессах. Поэтому энергию и работу выражают в одних и тех же единицах (в СИ - в джоулях). В более общем смысле энергия - это единая мера разных форм движения материи, а также мера перехода движения материи из одной формы в другую. Для характеристики конкретных форм движения материи используют понятия о соответствующих видах энергии: механической, внутренней, электромагнитной и т. д. Механическая энергия является характеристикой движения и взаимодействия тел. Она зависит от скоростей и взаимного расположения тел.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]