Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по мат.ану..doc
Скачиваний:
1
Добавлен:
13.07.2019
Размер:
275.97 Кб
Скачать

Числові ряди

Нехай дана числ послід U1,…,Un,… = (1) - числ ряд. Числа U1…Un… - члени цього ряду. Sn = - n-та часткова сума ряду

Означення: числ ряд сходиться, якщо сходиться послідовність його часткових сум і в противному випадку(  = S), S - сума ряду (1).

Означення: числ ряд отриманий з ряду (1) отриманий в результаті викреслення перших n - членів наз n-тим остатком ряду (1). дана прогресія а00q,…,a0qn , Sn=

q<1, = ; 2) q>1, не існує 3) q=1, lim не існує

4) q=-1, lim не існує

Зауваження: числ ряд представляє собою іншу форму запису числ послід. Кожному ряду відповідеє послід його частинних сум.

Зауваження: Додавання чи віднімання скінченного числа доданків до ряду не впливає на його збіжність.

Критерій Коші для рядів.

Теорема: для того, щоб числ ряд сходився необхідно і достатньо, щоб  N :

<. Доведення: збіжність числ ряду означає, що сходяться послід його чостинних сум. сформулюємо критерій Коші для {Sn}: для того, щоб{Sn} сходилась, необхідно і достатньо, щоб  N : Sn+p-Sn< Sn+p-Sn= = <

Наслідок1: якщо числ ряд сходиться, то послід остатків цього ряду нескінченно мала.

{rn}= { } доведення оскільки числ ряд сходиться, то з критерію Коші випливає  N :  < зафіксуємо n і перейдемо до , тоді з останньої нерівності отримаємо =  тобто {rn} нескінченно мала.

Наслідок2: (необхідна умова збіжності числ ряду): для того. щоб числовий ряд сходився необхідно щоб =0 Доведення: оскільки числ ряд сходиться то з критерію Коші випливає  N :  <. Нехай р=1 тоді отримаємо Un+1< (n>N). Тобто {Un} нескінченно мала, виконується рівність:

Ознаки збіжності рядів з довільними членами.

1.Знакочередуючі ряди

Озн:Числовий ряд ∑(-1)n-1Un (1) називається знакоперемежним, якщо Un≥0∀nєN, або Un≤0, ∀n N.

Теорема 1(Ознака Лейбніца)

Якщо для знакоперемежного ряду віконуються умови

1) Un+1≤Un ( )

2) limn =0, то ряд збігається

Доведення:Розглянемо часткову сумму S2n=(U1-U2)+(U3-U4)+…+(U2n-1+U2n) 0 S2n=U1-(U2-U3)-(U4-U3)-...-(U2n-2-U2n-1)-U2n=U1-[(U2-U3)+(U4-U3)+…+(U2n-2-U2n)+U2n] n {S2n}-обмежена і монотонна, а значить існує limn =S2n=S (2)

Розглянемо {S2n+1}

S2n+1=S2n+U2n+1, то limn =S2n+1= limn =S2n+ limn =U2n+1=S (3)

З (2) і (3) випливає, що границя limn =Sn=S, а це означає, що числовий ряд (1) є збіжним.Твердження:Нехай {Un},{Vn} - довільні числові послідовності.Sk=U1+U2+…+Un, S0=0,

n, p - довільні номери; (n 0,p 1), тоді має місце тотожність (перетворення Абеля):

UkVk= Sk(Vk-Vk+1)+Sn+pVn+p-SnVn+1 (*), оскільки Uk=Sk-Sk-1, то ліву частину подамо так: UkVk= SkVk- SkVk= SkVk- SnVn+1= SkVk+Sn+pVn+p-SnVn+1- SnVn+1= Sk(Vk-Vk+1)+Sn+pVn+p-SnVn+1

Теорема 2(Ознака Деріхлє)

Нехай для числового ряду ∑UkVk виконуються умови:

1)Частинні сумми ряду ∑Un обмежені, тобто існує число M>0, таке, що : |Sn| M

2)Послідовність {Vn}є незростаючою, тобто :Vn Vn+1

3)Послідовність {Un}є нескінченно малою, тоді

данний числовий ряд є збіжним.

Доведення:Оскільки числ. ряд ∑Un має частинні суми, які всі належать [-M,+M], то з перетворення Абеля одержимо UkVk= |Sn||Vn+1|+|Sn+p||Vn+p|+|Sn||Vn+1| M{ |-Vk+1+Vk|+|Vn+p|+|Vn+1|} , а з 2 і 3 умови => що права частина дорівнює

M{ |-Vk+1+Vk|+Vn+p+Vn+1}=M{(Vn+1-Vn+2)+(Vn+2-Vn+3)+…+(Vn+p-1-Vn+p)+Vn+p+Vn+1}=2MVn+1;

З 3 умови теореми => |Vn|<e/2M , одержемо

| UkVk| 2Me/2M=e, а це означає, що даний ряд збігається згідно з критерієм Коші.

Теорема 3.

Нехай для числового ряду ∑UkVk виконуються умови:

Числовий ряд ∑Un збігається

числова {Vk}-незростаюча

{Vk}-обмежена, тоді числовий ряд збігається

Доведення:З 2 і 3 умови теореми => посл {Vn} збіжна.Нахай limn =Vk=V, тоді одержемо, що числовий ряд ∑UkVk=∑k=1Uk(Vk-V)+V∑Uk, якщо два ряда справа збігаються, то і лівий збігається. V∑Uk збігається згідно з умовою 1, а =∑k=1Uk(Vk-V) за ознакою Деріхлє

Зауваження:Теореми 2 і 3 залишаються вірними, якщо послідовність {Vn} є неспадною.

Абсолютна та умовна збіжність числових рядів.

Нехай дані числові ряди ΣUk (1) та Σ|Uk| (2)

Означення 1:Числ.ряд (1) називається абсолютно збіжним, якщо збігається числовий ряд (2)

Означення 2:Ряд (1) називається умовнозбіжним, якщо він збігається, а (2) - розбігається

Теорема 1:

Якщо limn =S2n=S (2) збігається, то і ∑(-1)n-1Un (1) збігається

Доведення:(2) - збігається, тоді з критерія Коші : ∀e<0∃NєN∀n>N∀pєN:∑n+pk=n+1|Uk|<e, тоді для ряду (1) одержемо : |∑n+pk=n+1Uk|≤∑n+pk=n+1|Uk|<e, тобто числовий ряд (1) збігається також за критерієм Коші.

Теорема 2:

Нехай числовий ряд ∑n=1an (1*) - абсолютнозбіжний і має сумму S. Тоді ряд, одержаний з даного перестановкою членів також є абсолютнозбіжним і має S.

Доведення:Дано,що ряд ∑n=1an - абсолютнозбіжний.

позначимо ∑n=1an (2*) ряд отриманий перестановкою членів (1*)

Sn*- довільна частинна сума ряду (2*), а Sm - частинна сумма (1*), яка містить всі члени частинної суми Sn*.Тоді мають місце : Sn*≤Sm≤S (3)(∀nєN)

Оскільки всі члени (1*) невід'ємні, то і всі члени (2*) теж невід'ємні, а (1*) має суму S =>

Оскільки {Sn*} є обмеженною і монотонною, то ∃ limn→∞Sn*=S*≤S (випливає з (3) )

Ряд (2*) є збіжним. Тоді, аналогічно, з (2*) за допомогою перестановкичленів, можно одержати ряд (1*) і відповідну нерівність S≤S*=>S*=s

∑an - довільний числовий ряд. Розлянемо допоміжні ряди:

∑Un, Un=an(an≥0) Un=0(an<0) (6)

∑Vn, Vn=-an(an<0) Vn=0(an≥0) (7)

(6) і (7) - ряди з невід'ємними членами, тоді an=Un-Vn; Sn|,Sn|| - частинні суми (6),(7) рядів.

Оскільки ∀nєN Un≤|an|,Vn≤|Un|, то ряді (6) і (7) збігається за 1 ознакою порівняння. Покажемо, що ряд (2*) збігається абсолютно. Оскільки ряд (1*) збігається абсолютно, то це означає, що збігається ∑|an|, а тоді по доведенному в першому випадку буде збігатися ∑|an*|, а це означає, що (2*) збігається абсолютно.

Введемо допоміжні ряди

∑Un* , Un*=an*(an*≥0) Un*=0(an*<0) (8)

∑Vn* , Vn*=-an*(an*<0) Vn*=0(an*≥0) (9)

Очевидно, що an* = Un*-Vn*; S*,Sn*| ,Sn*|| - частинні суми (2),(8),(9) відповідно =>

S= limn Sn= limn (Sn|-Sn||)= limn Sn|- limn Sn, а це за доведеним в першому випадку дорівнює: limn Sn*|- limn Sn*||= limn (Sn*|-Sn*||)= limn Sn*=S, тобто числовий ряд(2*) має сумму S.