Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_fizras (1).doc
Скачиваний:
55
Добавлен:
22.07.2019
Размер:
1.02 Mб
Скачать

55Полегание растений

вызывается обыкновенно не соответствующим природе растения состоянием погоды или удобрением почвы. П. подвержены более всего колосовые хлеба, причем явление это наблюдается по преимуществу при излишке удобоусвояемого азота и влаги, особенно в почве с мелким пахотным слоем. Совокупность этих влияний обусловливает буйное развитие надземных органов, несмотря на слабый рост корневой системы; благодаря этому растения не могут пользоваться в соответственной мере достаточным количеством питательных веществ почвы и воздуха, чтобы утолстить стебель и стенки клеточек стеблевых тканей и тем сообщить стеблю надлежащую крепость, без которой они не в состоянии сопротивляться наклоняющему действию ветра и не подламываться под тяжестью колоса. В значительной мере усиливается П. еще от густого стояния растений, когда, отеняемые друг другом, они несоразмерно вытягиваются вверх по направлению к свету, вследствие чего нижняя часть стеблей испытывает неблагоприятные последствия этиолирования (см.). Меры против П.: осушка почвы, если последняя слишком влажна, углубление пахотного слоя, очищение поля от сорных трав, предупреждающее необходимость густого посева, и, наконец, применение минеральных удобрений (калийных, фосфорнокислых и содержащих известь) взамен легкоусвояемых азотистых туков или туков, хотя и заключающих в себе азот, но разлагающихся постепенно; иногда полезно временное прекращение употребления вообще всякого рода азотистых удобрений.

56. Созревание плодов, совокупность морфологических и биохимических изменений в плоде, в результате которых семена становятся полноценными зачатками новых растений, а околоплодник приобретает способность выполнять функции защиты и распространения семян. После опыления цветков у плодовых растений образуется завязь, которая переходит к интенсивному росту. Внутри завязи происходит формирование и созревание семян, способствующее также росту и созреванию околоплодника, по-разному протекающему у сухих и сочных плодов. У сухих плодов этот процесс сводится в основном к обезвоживанию тканей. Так, у бобовых происходит сморщивание и уменьшение размеров околоплодника, у злаков высыхающий околоплодник срастается с семенной оболочкой. У сочных плодов околоплодник разрастается за счёт тканей завязи или цветоложа. При этом происходит увеличение числа клеток, их размеров, а также образование межклеточных пространств. Различают два основных периода развития плода: первый — от оплодотворения яйцеклетки до созревания семян и окончания роста околоплодника, второй — до полного созревания околоплодника. В первый период идут усиленный рост и формирование семян и околоплодника, сопровождающиеся интенсивным притоком питательных веществ и воды из листьев. В семенах и плоде преобладают процессы синтеза высокомолекулярных веществ: белков, жиров, углеводов (крахмал, целлюлоза, пектиновые вещества). Во второй период изменяются морфологические и биохимические признаки плода: он размягчается, приобретает свойственные ему окраску, вкус и аромат. Большую роль в этих изменениях играет процесс дыхания, снабжающий энергией ткани плода. Характерная особенность многих видов плодов — т. н. климактерический подъём дыхания. У некоторых плодов он наблюдается до снятия их с дерева, у других (дозревающих в лёжке) — после него. Подъёму дыхания способствует образование в плодах этилена. В период созревания снижается содержание крахмала, органических кислот и фенолов (дубильные вещества) и накапливаются азотистые соединения и растворимые сахара; в результате формируется вкус плода. Размягчение плодов зависит от изменения соотношения и состояния полисахаридов, особенно пектиновых веществ, в клеточных стенках. При созревании изменяется состав пигментов, входящих в кожицу, мякоть и клеточный сок плода: обычно разрушается хлорофилл и синтезируются каротиноиды, антоцианы и др. пигменты. Благодаря синтезу спиртов, альдегидов, сложных эфиров, терпенов плод приобретает свойственный ему аромат. Регуляция процессов С. п. осуществляется вырабатываемыми растениями фитогормонами. После климактерического подъёма дыхания наступает старение и перезревание плодов.

У косточковых, ягод, банана, инжира период С. п. короткий, у цитрусовых — длительный. У яблок и груш этот период колеблется в широких пределах в зависимости от сорта (летние, осенние, зимние). Для транспортируемых и хранящихся плодов различают две степени зрелости: съёмную и потребительскую. На С. п. влияют факторы внешней среды — температура, свет, газовый состав среды, что особенно проявляется при послеуборочном С. п.

57. Высокая эффективность Ф. высших зелёных растений обеспечивается совершенным фотосинтетическим аппаратом, основа которого – внутриклеточные органеллы – хлоропласты (в клетке зелёного листа их 20–100). Они окружены двуслойной мембраной. Внутренний слой её построен из уплощённых мешочков или пузырьков, называемых тилакоидами, которые часто упакованы в стопки, составляют граны, соединённые между собой одиночными межгранными тилакоидами. Тилакоиды состоят из собственно фотосинтетических мембран, представляющих собой биомолекулярные липидные слои и мозаично вкрапленные в них липопротеидопигментные комплексы, образующие фотохимически активные центры, и содержат также специальные компоненты, участвующие в транспорте электронов и образовании аденозинтрифосфата (АТФ). Часть хлоропласта, находящаяся между тилакоидами строма, содержит ферменты, катализирующие темновые реакции Ф. (например, превращение углерода, азота, серы, биосинтез углеводов и белков). В строме откладывается образуемый при Ф. крахмал. Хлоропласты имеют собственные ДНК, РНК, рибосомы, синтезирующие белки, и обладают некоторой генетической автономностью, но находятся под общим контролем ядра. фотосинтезирующие бактерии и большинство водорослей не имеют хлоропластов. Фотосинтетический аппарат большинства водорослей представлен специализированными внутриклеточными органеллами – хроматофорами, а фотосинтезирующих бактерий и сине-зелёных водорослей – тилакоидами (мембраны их содержат пигмент бактерио-хлорофилл или бактериовиридин, а также др. компоненты реакций Ф.), погруженными в периферические слои цитоплазмы.

58. Первые опыты по фотосинтезу были проведены Джозефом Пристли в 1770—1780-х годах, когда он обратил внимание на «порчу» воздуха в герметичном сосуде горящей свечой (воздух переставал быть способен поддерживать горение, помещённые в него животные задыхались) и «исправление» его растениями. Пристли сделал вывод что растения выделяют кислород, который необходим для дыхания и горения, однако не заметил что для этого растениям нужен свет. Это показал вскоре Ян Ингенхауз.

Позже было установлено что помимо выделения кислорода растения поглощают углекислый газ и при участии воды синтезируют на свету органическое вещество. В 1842 Роберт Майер на основании закона сохранения энергии постулировал что растения преобразуют энергию солнечного света в энергию химических связей. В 1877 В. Пфеффер назвал этот процесс фотосинтезом.

Хлорофиллы были впервые выделены в 1818 П. Ж. Пельтье и Ж. Кавенту. Разделить пигменты и изучить их по отдельности удалось М. С. Цвету с помощью созданного им метода хроматографии. Спектры поглощения хлорофилла были изучены К. А. Тимирязевым, он же, развивая положения Майера, показал что именно поглощенные позволяют повысить энергию системы, создав вместо слабых связей С-О и О-Н высокоэнергетические С-С (до этого считалось что в фотосинтезе используются жёлтые лучи, не поглощаемые пигментами листа). Сделано это было благодаря созданному им методу учёта фотосинтеза по поглощённому CO2, в ходе экспериментов по освещению растения светом разных длин волн (разного цвета) оказалось что интенсивность фотосинтеза совпадает со спектром поглощения хлорофилла.

Окислительно-восстановительную сущность фотосинтеза (как оксигенного, так и аноксигенного) постулировал Корнелис ван Ниль. Это означало что кислород в фотосинтезе образуется полностью из воды, что экспериментально подтвердил в 1941 А. П. Виноградов в опытах с изотопной меткой. В 1937 г. Роберт Хилл установил что процесс окисления воды (и выделения кислорода), а также ассимиляции CO2 можно разобщить. В 1954—1958 Д. Арнон установил механизм световых стадий фотосинтеза, а сущность процесса ассимиляции CO2 была раскрыта Мельвином Кальвином с использованием изотопов углерода в конце 1940-х, за эту работу в 1961 ему была присуждена Нобелевская премия.

В 1955 году был выделен и очищен фермент рибулозобисфосфат-карбоксилаза/оксигеназа. С4 фотосинтез был описан Ю. С. Карпиловым в 1960 и М. Д. Хэтчем и К. Р. Слэком в 1966.

59. Температура. Дыхание у ряда растений осуществляется и при температуре ниже 0°С. Так, у хвои ели процесс дыхания идет даже при температуре —25°С. Как всякая ферментативная реакция с повышением температуры интенсивность дыхания возрастает. Однако это происходит до определенного предела, выше которого начинается инактивация ферментов и интенсивность дыхания снижает­ся. Температурный коэффициент (Q10) процесса дыхания зависит от типа растений и от градаций температу­ры. Так, при повышении температуры от 5 до 15°С Q10 может возрастать до 3, тогда как повышение температуры от 30 до 40°С увеличивает интенсивность дыхания менее значительно (Q10 около 1,5). Оптим.темп.= 25-30,макс.= 45-55,мин.=-25.

Кислород необходим для протекания дыхания, поскольку является конечным акцептором электронов, движущихся по дыхательной цепи. Увеличение содержания кислорода до 5—8% сопровождается повы­шением интенсивности дыхания. В отсутствие кислорода дыхание уступает место брожению. При содержании кислорода ниже 5% брожение усиливается, и выделение углекислого газа начина­ет превышать поглощение кислорода. Это приводит к тому, что дыхательный коэффициент, как правило, становится больше единицы. При повышении содержания кислорода процесс брожения полностью ингибируется (эффект Пастера) и дыхательный коэффициент становится равным единицеНеобходимо также отметить, что кислород оказывает стимулирующее влияние на процесс фото­дыхания. Оптим. Концентрация-12 % в почвенном воздухе. С02 является конечным продуктом как броже­ния, так и аэробного дыхания. При довольно высоких концентрациях С02, значительно превышающих те, которые обычно окружают растительный организм (выше 40%), процесс дыхания тормозится. Небольшой водный дефицит растущих тканей увеличива­ет интенсивность дыхания. Это связано с тем, что водный дефицит и даже подвядание листьев усиливают процессы распада сложных углеводов (крахмала) на более простые (сахара). При длительном завядании растение расходует сахара, и интенсивность дыхания падает. Иная законо­мерность характерна для органов, находящихся в состоянии покоя. Увеличение содержания воды в семенах с 12 до 18% уже увеличивает интенсивность дыхания в 4 раза. В процессе фотосинтеза образуются основные субстраты дыхания — углеводы. Вместе с тем промежу­точные продукты, образовавшиеся при дыхании, могут вовлекаться в фотосин­тетический цикл. Установлено, что свет стимулирует процесс фотодыхания. Интенсивность дыхания сильно зависит от снабжения рас­тения элементами минерального питания. Такие элементы, как фосфор, сера, железо, медь, марганец, принимают непосредственное участие в процессе дыха­ния, входя в промежуточные продукты (фосфор) или являясь составной частью дыхательных ферментов. Поранение органов и тканей растения усиливает интенсивность дыхания. Это связано с разрушением клеток, из-за чего повышается соприкосновение дыхательных субстратов и ферментов.

Интенсивность дыхания зависит от возраста. Как правило, более молодые растущие органы и ткани дышат более интенсивно. Интенсивность дыхания про­ростков обычно резко возрастает в течение периода их наибольшего роста (пер­вые 4—5 суток после начала прорастания), а затем начинает падать. Наивысшей интенсивностью дыхания обладают растения перед началом цветения. Очень низкое дыхание характерно для сухих семян, завершивших рост плодов, тканей, в которых имеется большой процент мертвых клеток. Низкая интенсивность дыхания у покровных тканей. Высокой интенсивностью дыхания характеризуются цветки (особенно тычинки и пестики), клетки флоэмы и камбия. очные плоды, корнеплоды, клубни вентилируются очень пло­хо; они слабо проницаемы для газов, не только для кислорода, но и для углеки­слого газа. Естественно, в этих органах процесс дыхания сдвигается в анаэроб­ную сторону, дыхательный коэффициент возрастает.

В присутствии кислорода пировиноградная кислота претерпевает превращения по пути аэробного дыхания и перестает служить суб­стратом для процесса брожения (эффект Пастера). В результате под влиянием кислорода процесс брожения затормаживается.

У всех групп плодоовощной продукции , в основе жизнедеятельности во время хранения лежит процесс дыхания. За счет него образуются пластические вещества и энергия для нового синтеза и передвижения веществ, связанных с дифференциацией почек, созреванием семян и околоплодника, защитными реакциями и т. д. При дыхании выделяется тепло, определяющее условия, складывающиеся в штабелях, и технологию охлаждения и размещения продукции при хранении. При дыхании выделяется тепло, в массе продукции формируются определенные условия, которые влияют на технологию размещения продукции, вентиляцию, охлаждение и хранение. Дыхание сочной растительной продукции протекает по аэробному типу в том случае, когда имеется свободный доступ воздуха и окисление идет до конечных продуктов. Но такие условия бывают не всегда. При недостатке кислорода воздуха продукция переходит на приспособительный тип дыхания, анаэробный. В этом случае образуются такие недоокисленные продукты, как этиловый спирт и другие, что может привести к возникновению физиологических расстройств в виде потемнений, некрозов и т. п. На интенсивность дыхания влияют многие причины, такие как вид продукции, сорт, степень зрелости, наличие механических и других повреждений, условия окружающей среды. У плодов и овощей наиболее интенсивное дыхание отмечается в первые дни после уборки. Затем интенсивность дыхания постепенно снижается, наступает состояние покоя (для некоторых видов), а к весне — вновь возрастает. Колебания температуры при хранении усиливают интенсивность дыхания. Пониженная влажность воздуха в хранилищах приводит к увяданию заложенной продукции, потере клетками ткани тургора и увеличению интенсивности дыхания. Газовый состав воздуха влияет на интенсивность дыхания. Увеличение количества углекислого газа и снижение кислорода уменьшают интенсивность дыхания плодов и овощей, замедляют процесс старения и увеличивают процесс хранения. С дыханием тесно связано протекание раневых реакций у картофеля и корнеплодов.

60.Передвижение минеральных и органических веществ по растению имеет очень большое значение, так как это процесс, с помощью которого осуществляется фи­зиологическая взаимосвязь отдельных органов. Между органами, поставляющими питательные вещества, и органами, потребляющими их, создаются так называе­мые донорно-акцепторные связи. Донором минеральных питательных веществ служит корень, донором органических веществ — лист. В этой связи в растениях существуют два основных тока питательных веществ — восходящий и нисходящий. Большую роль в изучении путей передвижения отдельных питательных веществ сыграл прием кольцевания растений. Этот прием заключается в наложении коль­цевых вырезок на стебель растения; при этом кора (флоэма) удаляется, а древесина (ксилема) остается неповрежденной. С помощью этого приема еще в конце XVII в. итальянским исследователем М. Малышги было показано, что восходящий ток воды с минеральными веществами идет по ксилеме, нисходящий ток органических ве­ществ из листьев — по элементам флоэмы. Вывод этот был сделан М. Малышги на основании того, что над кольцевой вырезкой листья оставались тургесцентными, несмотря на удаление коры, в них продолжала поступать вода. Ток органических веществ приостанавливался, и это приводило к образованию над вырезкой утол­щении (наплывов). Ряд уточнений в вопрос о путях и направлении передвижения веществ по растению внесли исследования с применением меченых атомов. В настоящее время ученые считают, что система транспорта у растений вклю­чает внутриклеточный, ближний и дальний транспорт. Ближний транспорт — передвижение веществ между клетками внутри органа по неспециализирован­ным тканям, например по апопласту или симпласту. Дальний транспорт — это перемещение веществ между органами по специализированным тканям — про­водящим пучкам, т. е. по ксилеме и флоэме. Вместе ксилема и флоэма образуют проводящую систему, которая пронизывает все органы растения и обеспечивает непрерывную циркуляцию воды и веществ.

61.Хлорофилл - зелёный пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез. Локализован в особых клеточных структурах — хлоропластах или хроматофорах и связан с белками и липидами мембран. По химическому строению сложное циклическое соединение — порфирин, содержащий атом Mg. Существуют различные (близкие по структуре) типы хлорофилла. Х. а в процессе фотосинтеза поглощает световую энергию и превращает её в энергию химических связей органических соединений. Растворы хлорофилла а имеют сине-зеленую окраску и обладают сильной красной флуоресценцией. Главные максимумы спектра поглощения: красная область-640-700нм, синяя- 400-450нм. Биосинтез хлорофилла осуществляется в полиферментных комплексах (так называемых центрах биосинтеза), локализованных, в строме хлоропластов. Общее содержание хлорофилла в хлоропластах обычно составляет около5% на сухую массу. Более 99% хлорофилла находится в составе светособирающих пигмент-белковых комплексов, которые выполняют функцию антенны, т. е. поглощают солнечную энергию или акцептируют ее от вспомогательных пигментов — каротиноидов или фикобилинов, а затем транспортируют к реакционным центрам. У высших растений и водорослей существуют два типа реакционных центров, соответствующих двум фотосистемам хлоропластов (фотосистемы I и фотосистемы II). Реакционные центры ФС I содержат только хлорофилл а, реакционные центры ФС II — хлорофилл а и его безмагниевый аналог — феофитин. Хлорофиллы в и с не входят в состав реакционных центров, выполняя функцию светособирающих антенн. Состояние хлорофилла в фотосинтетическом аппарате существенно отличается от состояния изолированного хлорофилла в растворах из-за пигмент-пигментных и пигмент-белковых взаимодействий. Например, хлорофилл a образует в фотосинтетическом аппарате не менее 10 различных спектральных форм. Поглощая квант света, изолированная молекула хлорофилла переходит в возбужденное синглетное состояние (время жизни около 5 нс) и затем дезактивируется с испусканием кванта флуоресценции (квантовый выход — 20—40%) .Возбужденные светом молекулы хлорофилла способны переносить электрон от молекулы донора на молекулу акцептора.

В результате запускаемого хлорофиллом электронного транспорта высшие растения, водоросли, цианобактерии и прохлорофитные бактерии осуществляют фоторазложение воды с выделением в атмосферу газообразного кислорода, образование АТФ и фиксацию СО 2 с образованием углеводов.

Каротиноиды, жёлтые, оранжевые или красные пигменты (циклические или ациклические изопреноиды), синтезируемые бактериями, грибами и высшими растениями. Производные изопрена. Спектр действия этой реакции совпадает со спектром поглощения хлорофилла. В клетке концентрация К. наиболее высока в пластидах. К. способствуют оплодотворению растений, стимулируя прорастание пыльцы и рост пыльцевых трубок. К. участвуют в поглощении света растениями и восприятии его животными; играют большую роль в процессах фотосинтеза, а также в переносе кислорода в растениях. Не растворимы в воде, близкие к витамину А (ретинолу). К каротиноидам относятся широко распространенные каротины и ксантофиллы.

Фикобилины (от греч. phýkos – водоросль и лат. bilis – жёлчь), пигменты красных и синезелёных водорослей (фикоэритрины – красные, фикоцианины – синие); белки из группы хромопротеидов. Участвуют в фотосинтезе в качестве сопровождающих пигментов, доставляя поглощённую энергию света к фотохимически активным молекулам хлорофилла. Фикобилины концентрируются в особых гранулах (фикобилисомах), тесно связанных с мембранами тилакоидов. Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра.

62.Биологическая фиксация азота атмосферы имеет важное значение. Об этом свидетельствуют масштабы процесса — до 200 млн т N/год. Благодаря биологической фиксации азот переходит в формы, которые могут использовать все растительные, а через них и животные организмы. Конечным продуктом фиксации азота является аммиак. В процессе восстановления азота до аммиака участвует мультиферментный комплекс — нитрогеназа. Нитрогеназа состоит из двух компонентов. Источником протонов и электронов для восстановления азота служит дыхательная электрон-транспортная цепь. Это указывает на связь усвоения азота атмосферы с процессами дыхания, а также фотосинтеза (источника углеводов).

-2электрона -6 электронов

N O3 NO2

Молибден Fe,Cu,Mg,Mn

Восстановители- НАДФ-Н2,НАД*Н2. Для нормального протекания процесса азотофиксации необходимы Мо и Fe, поскольку они входят в состав фермента нитрогеназы. Образовавшийся аммиак здесь же в клетках корня реагирует с а-кетоглутаровой кислотой с образованием глутаминовой кислоты, которая и вовлекается в дальнейший обмен. В надземные органы растения-хозяина азотистые вещества передвигаются главным образом в виде амидов (аспарагина, глутамина). Нитратредуктаза — это основной фермент. Донором электронов при этой реакции у грибов является НАДФН, а у растений НАДН. В свою очередь поставщиком этих соединений являются процесс дыхания и от­части световые реакции фотосинтеза. Именно поэтому восстановление нитра­тов тесно связано с дыхательным газообменом. Вместе с тем для нормального протекания процесса дыхания растение должно быть достаточно обеспечено углеводами.

Причины накопления высоких уровней нитратов в растениях и пути снижения их содержания:

Завышенные нормы азотных удобрений.

Недостаток микроэлементов.

Низкая освещенность.

Низкие значения рН почвы(кислые).

Почвенно-экологические факторы(при низкой температуре и повышенной влажности)

В ранних растениях больше нитратов, чем в старых. Уборку проводить зеленых овощей вечером. Распределение нитратов неравномерно, в растениях особенно богаты стебли и черешки.

63.Рост — это необратимое увеличение размеров, объема, массы организма. Рост — это необратимое увеличение объема, массы растений, сопровождаемое новообразованием элементов структуры организма. В отличие от животных организмов растения в течение всей жизни растут и образуют новые клетки, хотя обычно с некоторыми перерывами (период покоя). Рост р-ний локализуется в т. н. зонах роста и складывается из процессов деления клеток, последующего их увеличения и дифференцировки, обеспечивающей специализацию тканей. Процессы деления и начального роста сосредоточены в образовательных тканях — меристемах . В зависимости от расположения меристем различают верхушечный рост (в длину, за счёт [счет] верхушечной меристемы побега и корня), боковой (в толщину стебля за счёт [счет] камбия) и вставочный, или интеркалярный (в длину побега, за счёт [счет] вставочных меристем в узлах стебля, напр. у мятликовых). К меристеме прилегает зона объёмного [объемного] роста и дифференцировки клеток. Зона деления клеток составляет у побега и корня неск. мм, а зона объёмного [объемного] их роста может достигать 10 — 15 см. Важным свойством роста является ритмичность. Существуют ритмы, следующие за изменениями внеш. условий — длины дня, темп-ры воздуха, влажности почвы и т.д. (экзогенные), и контролируемые внутр. факторами (эндогенные). Отсутствие видимого роста наз. покоем. Фаза деления- основная роль принадлежит цитокининам, принимают участие ауксины. Фаза растяжения- осн. роль ауксины(Ауксины — это вещества индольной природы. Наиболее ярким проявлением физиологического действия ауксина является его влияние на рост клеток в фазе растяжения. Под влиянием ауксинов может измениться направление дифференциации клеток При всех физиологических проявлениях ауксины усиливают поступление воды и питательных веществ (аттрагирующее влияние).., кот. разрыхляют клеточную стенку. Фаза дифференциации – цитокинины.( Цитокинины в первую очередь оказывают влияние на деление клеток, хотя в некоторых случаях могут регулировать и их растяжение. Цитокинины также оказывают влияние на направление дифференциации клеток и тканей. цитокинины — это производные пуриновых азотистых оснований, а именно аденина, в котором аминогруппа в шестом положении замещена различными радикалами.) На этой фазе процесс дифференцировки уже прояв­ляется в определенных структурных признаках, т. е. меняется форма, внутрен­няя и внешняя структура клетки. Фаза старения – включается подпрограмма старения, постепенное накопление токсикантов, нарушение клеточныхструктур.

64 Вода является основной составной частью растительных организмов. Ее содержание доходит до 95% от массы организма, и она участвует прямо или косвенно во всех жизненных процессах. Для своего нормального существования клетки и растительный организм в целом должны содержать определенное количество воды. Огромный расход воды связан с тем, что большинство растений обладает значительной листовой поверхностью, находящейся в атмосфере, не насыщенной парами воды. Вместе с тем развитие обширной поверхности листьев необходимо и выработалось в процессе длительной эволюции для обеспечения нормального питания углекислым газом, содержащимся в воздухе в ничтожной концентрации (0,03%).Для того чтобы возместить потери воды при испарении, в растение должно непрерывно поступать большое ее количество. Непрерывно идущие в растении два процесса — поступление и испарение воды — называют водным балансом растений.Для нормального роста и развития растений необходимо, чтобы расход воды примерно соответствовал приходу, или, иначе говоря, чтобы растение сводило свой водный баланс без большого дефицита. Для этого в растении в процессе естественного отбора выработались приспособления к поглощению воды (колоссально развитая корневая система), к передвижению воды (специальная проводящая система), к сокращению испарения (система покровных тканей и система автоматически закрывающихся устьичных отверстий). Несмотря на все указанные приспособления, в растении часто наблюдается водный дефицит, т. е. поступление воды не уравновешивается ее расходованием в процессе транспирации. Физиологические нарушения наступают у разных растений при разной степени водного дефицита. Есть растения, выработавшие в процессе эволюции разнообразные приспособления к перенесению обезвоживания (засухоустойчивые растения). В естественных условиях очень часто даже в обычные ясные дни поступления воды в растение не успевает за ее расходованием. Образуется водный дефицит, который легко обнаружить, определяя содержание воды в листьях в разные часы суток. Измерения показали, что в полуденные часы содержание воды в листьях примерно на 25—28% меньше по сравнению с утренними. Увеличение водного дефицита сопровождается уменьшением водного потенциала листьев. Именно поэтому в дневные часы водный потенциал листьев, как правило, наименьший (более отрицательный).Полуденный водный дефицит представляет собой нормальное явление и осо­бенной опасности для растительного организма не представляет. Значительно­му увеличению водного дефицита препятствует сокращение транспирации в ночные часы. В нормальных условиях водоснабжения перед восходом солнца листья растений насыщены водой. Однако при определенном сочетании внеш­них условий водный дефицит настолько возрастает, что не успевает восстанав­ливаться за ночь. В утренние часы листья растений уже недонасыщены водой, появляется остаточный утренний водный дефицит (Л.С. Литвинов). В после­дующие дни, если снабжение водой не улучшится, недостаток воды будет все больше и больше нарастать. В некоторых случаях может наблюдаться завядание растений и утрачивается тургор. Различают два типа завядания.. Причиной временного завядания чаще всего бывает атмосферная засуха, когда доступная вода в почве есть, однако низкая влажность воздуха, высокая температура настолько увеличивают транспирацию, что поступление воды не поспевает за ее расходованием. При временном завядании в основном теряют тургор листья. Временное завядание не проходит без последствий. Глубокое завядание наступает тогда, когда в почве почти не остается доступ­ной для растения воды. Происходят глубокие изменения в цитоплазме, увеличивается ее вязкость. Возрастает проницаемость мембран. Листья, подвергшиеся завяданию, при помещении в воду выделяют значительное количество солей и других растворимых соединений. Усиленный выход солей (экзоосмос) наблюдается также из клеток корня, подвергнутых завяданию. Од­новременно эти клетки теряют способность к поглощению питательных веществ. В результате нарушения гидратных оболочек меняется конфигурация белков-ферментов и, как следствие, их активность. Особенно резко падает активность ферментов. Изменяется нуклеиновый обмен. Недостаток воды изменяет и такие основные физиологические процессы, как фотосинтез и дыхание. При обезвоживании устьица закрываются, это резко ухи о снижает поступление С02 в лист и, как следствие, интенсивность фотосинтеза падает. меньшение содер­жания воды прекращает деление клеток. В условиях водного стресса происходят заметные изменения и в гормональной системе. Это, прежде всего, выражается в накоплении таких фитогормонов как АБК и этилен. Абсцизовая кислота вызывает уменьшение транспирации при /,, одновременном усилении поглощения воды корневой системой.

65. Весь процесс фотосинтеза протекает в зеленых пластидах — хлоропластах. Различают три вида пластид: лейкопласты — бесцветные, хромопласты — оранжевые, хлоропласты — зеленые. В лейкопластах синтезируется и отлагается в запас крахмал, в хромопластах накапливаются каротиноиды, в хлоропластах сосредоточен зеленый пигмент хлорофилл и происходит фотосинтез. Размер хлоропластов колеблется от 4 до 10 мкм. Число хлоропластов обычно составляет от 20 до 100 на клетку. Действительно, в хлоропластах сосредоточены все ферменты, принимающие участие в процессе фотосинтеза (окислительно-восстановительные, синтетазы гидролазы). В настоящее время доказано, что в хлоропластах, так же как и в митохондриях, имеется своя белоксинтезирующая система. Многие из ферментов, локализованных в хлоропластах, являются двухкомпонентными. Во многих случаях простетическая группа ферментов — это различные витамины. В хлоропластах сосредоточены многие витамины и их производные (витамины группы В, К, Е, D). В хлоропластах находится 80% Fe, 70% Zn, около 50% Си от всего количества этих элементов в листе. Хлоропласты окружены двойной мембраной.

Внутреннее пространство хлоропластов заполнено бесцветным содержимым — стромой и пронизано мембранами (ламеллами). Ламеллы, соединенные друг с другом, образуют как бы пузырьки—тилакоиды. В хлоропластах имеется как бы два раздельных пространства — внутреннее (внутри тилакоидов) и внешнее (вне тилакоидов). В строме хлоропластов находятся нити ДНК, рибосомы, крахмальные зерна. Основной фермент, обеспечивающий усвоение углекислого газа, — рибузолобифосфаткарбоксилазаоксигеназа (сокращенно РБФ — карбоксилазаоксигеназа) также расположен в строме. Зеленый пигмент хлорофилл в виде комплекса с белками (пигмент-белковые комплексы) сосредоточен главным образом в тилакоидах гран и частично в тилакоидах стромы. В мембранах тилакоидов гран локализован фермент, катализирующий синтез АТФ (АТФ-синтаза). Этот фермент связан с белком, расположенным в самой мембране. Зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. При исследовании влияния качества света на образование хлорофилла в большинстве случаев проявилась положительная роль красного света. освещение электрической лампой мощностью 10 Вт на расстоянии 400 см было пределом, ниже которого образование хлорофилла прекращалось. Существует и верхний предел освещенности, выше которого образование хлорофилла тормозится. На скорость образования хлорофилла оказывает влияние содержание воды. Сильное обезвоживание проростков приводит к полному прекращению образования хлорофилла. Необходимость углеводов для протекания процесса зеленения. Лиственные и печеночные мхи сохраняют способность образовывать хлорофилл в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. Более развита эта способность у теневыносливых пород хвойных деревьев. Важнейшее значение для образования хлорофилла имеют условия минерального питания. Прежде всего необходимо достаточное количество железа. При недостатке железа листья даже взрослых растений теряют окраску. Это явление названо хлорозом. Большое значение для обеспечения синтеза хлорофилла имеет нормальное снабжение растений азотом и магнием, так как оба эти элемента входят в состав хлорофилла. При недостатке меди хлорофилл легко разрушается. Максимальное содержание хлорофилла приурочено к началу цветения. Синтез хлорофилла зависит от деятельности корневой системы. Потеря белка и каротиноидов в срезанных листьях идет параллельно. Образование каротиноидов зависит от источника азотного питания. Более благоприятные результаты по накоплению каротиноидов получены при выращивании растений на нитратном фоне по сравнению с аммиачным. Недостаток серы резко уменьшает содержание каротиноидов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]