Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тезисы лекций Оптика.doc
Скачиваний:
20
Добавлен:
16.08.2019
Размер:
910.34 Кб
Скачать

9. Волновые свойства микрочастиц

1. Гипотеза де Бройля

Из курса Оптики известно, что свет – это поток фотонов, которые одновременно обладают как волновыми, так и корпускулярными свойствами. Например, если свет очень малой интенсивности, так что фотоны летят по одиночке, пропускать через небольшое отверстие, то все равно на фотопластинке со временем из отдельных засвеченных точек создается система дифракционных колец. Здесь одновременно проявляются волновые свойства фотонов, поскольку это электромагнитные волны, и корпускулярные свойства фотонов.

В 1924 году Луи де Бройль выдвинул гипотезу, что сочетание волновых и корпускулярных свойств присуще не только фотонам, но также микрочастицам вещества, таким как электроны, протоны, атомы и даже молекулам. Причем соотношение между волновыми и корпускулярными свойствами точно такое же, как и для фотонов. Длина волны де Бройля равна отношению постоянной Планка к импульсу частицы, а частота волнового процесса равна отношению энергии частицы к постоянной Планка:

, (1)

где импульс нерелятивистских частиц равен произведению массы частицы на скорость .

Гипотеза де Бройля была экспериментально подтверждена. В опытах Дэвиссона и Джермера исследовалось отражение электронов от монокристалла никеля. Отраженные электроны улавливались цилиндром Фарадея, расположенного под некоторым углом. Сила тока отраженного пучка регистрировалась гальванометром. Оказалось, что зависимость интенсивности отраженного пучка электронов от ускоряющего напряжения электронной пушки имеет несколько максимумов, разделенными минимумами. Это было похоже на отражение рентгеновских лучей от монокристаллов, которое объясняется явлением дифракции рентгеновских волн. То есть пучок электронов обладает волновыми свойствами.

По закону сохранения энергии скорость электронов зависит от ускоряющего напряжения . Длина волны по формуле де Бройля будет равна

. (2)

Оказалось, что рассчитанные значения длин волн электронов совпадают со значениями длин волн рентгеновского излучения, рассчитанными по формуле Вульфа–Брэгга .

Волновые свойства электронов были обнаружены при прохождении электронов сквозь тонкие пленки поликристаллической структуры Тартаковским и Томсоном. На маленьких кристалликах, происходит дифракция. Так как кристаллики ориентированы хаотично, то дифракционная картина имеет вид колец, как и рентгенограмма.

Вопрос, что обладает волновыми свойствами: пучок электронов или отдельный электрон был решен в опытах Фабриканта на электронном микроскопе. Электроны летели настолько редко, что дифрагировали на выходном отверстии микроскопа поодиночке, и при длительной экспозиции на фотопластинке из отдельных точек возникала система дифракционных колец.

Понятие о волнах де Бройля в развитии современной науки оказалось поворотным пунктом. Исчезла необходимость в постулатах Бора.Например, представим электрон в атоме как стоячую волну де Бройля и пусть как для стоячей волны в струне, на длине орбиты укладывается целое число волн де Бройля: . Подставим сюда формулу для длины волны де Бройля и получим постулат Бора: момент импульса электрона кратен постоянной Планка .

.

2. Принцип неопределенности Гейзенберга

Если микрочастицы обладают свойствами волны, то, как и для волны, нельзя абсолютно точно указать точку локализации волны и ее направление распространения. Чем длиннее волновой цуг, тем точнее определено направление распространения, но тем больше неопределенность положения цуга. И наоборот, чем короче цуг волн, тем точнее определено положение цуга, но больше неопределенность направления распространения (рис. 3).

Р ассмотрим в качестве примера дифракцию частицы на узкой щели. Положение частицы в момент прохождения через щель известно с точностью до ширины щели Δх. Но после прохождения щели направление распространения частицы становится неопределенным, где-то в пределах угла расположения хотя бы центрального дифракционного максимума. Появляется неопределенность импульса частицы . Из теории дифракции для световых волн известно, что угловому положению первого минимума, или краю центрального максимума, соответствует соотношение . Исключая синус угла φ, подставляя формулу длины волны де Бройля, получим соотношение, называемое принципом неопределенности Гейзенберга

. (3)

Произведение неопределенности координаты частицы на неопределенность ее импульса не может быть меньше постоянной Планка. Принцип неопределенности Гейзенберга накладывает принципиальные ограничения на точность одновременного измерения пар величин. Например, чтобы точнее определить положение микрочастицы, наблюдаемой в микроскоп, надо освещать светом как можно меньшей длины волны, так как погрешность измерения равна длине волны. Но чем меньше длина волны фотонов, тем больший импульс они передают микрочастице

Аналогичное соотношение существует для пары величин энергия – время

. (4)

Произведение времени нахождения частицы в некотором состоянии на неопределенность энергии частицы не может быть меньше постоянной Планка. Для стабильной частицы (Δt →∞) энергия может быть измерена с высокой точностью.

Принцип неопределенности не является применимым только к волнам де Бройля. Аналогичные соотношения существуют в радиотехнике, в акустике при излучении и приеме коротких сигналов. Например, чем короче сигнал, тем больше погрешность с измерения частоты.

Для квантовых микрочастиц неопределенность импульса и энергии сопоставима с самой величиной импульса и энергии. Это позволяет оценивать импульс и энергию частиц с помощью принципа неопределенности.

3. Уравнение Шредингера

Движение свободной, вне силовых полей, частицы описывается уравнением гармонической функции (функции синуса, косинуса, экспоненты с мнимым показателем) для волны де Бройля. Запишем, для удобства преобразований, при движении частицы вдоль координаты х уравнение волны де Бройля в виде экспоненты с мнимым показателем:

. (1)

Часть функции, зависящая от времени, определяет частоту колебаний. Часть, зависящая от координаты х, определяет распределение амплитуды пси-функции по направлению координаты х. Для свободной частицы это уравнение плоской волны . Здесь – волновой вектор, – длина волны де Бройля, i – мнимая единица..

Определим вид дифференциального волнового уравнения, решением которого может быть уравнение для амплитуды пси-функции. Для этого достаточно продифференцировать уравнение амплитуды дважды по координате х.: . Откуда . Представим квадрат волнового вектора в виде и волновое уравнение для амплитуды пси-функции свободной частицы примет вид

. (2)

Преобразуем это уравнение для волны де Бройля свободной частицы в уравнение для движения частицы в силовом поле с потенциальной энергией U, не зависящей от времени. Для этого запишем соотношение между импульсом и кинетической энергией частицы . Кинетическую энергию определим как разность между полной и потенциальной энергиями . Подставив в волновое уравнение квадрат импульса , получим

. (3)

Это так называемое амплитудное уравнение Шредингера для простейшего случая одномерного движения частицы для стационарных состояний, то есть не зависящих от времени. Здесь m – масса частицы, ħ = 1,056∙10-34 Дж∙с – постоянная Планка.

При движении частицы в произвольном направлении следует определять производную для трех пространственных координат:

. (4)

Здесь символ оператора Лапласа.

Уравнение Шредингера является основным уравнением квантовой механики, подобно уравнениям Ньютона в классической механике.