Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
расчетка по физике 2 семестр.doc
Скачиваний:
4
Добавлен:
17.09.2019
Размер:
610.82 Кб
Скачать

Задача 4.12

Волновая функция основного состояния гармонического осциллятора имеет вид: . Найти среднее значение координаты х.

Д ано: Решение

Формула для вычисления среднего значения координаты х имеет

вид: = , где = .

-? Получаем:

= ,

где - интеграл Пуассона и он = , тогда получаем

Ответ: =

5. Потенциальная яма и потенциальный барьер.

Краткое теоретическое описание.

Потенциа́льный барье́р — область пространства, разделяющая две другие области с различными или одинаковыми потенциальными энергиями. Характеризуется «высотой» — минимальной энергией классической частицы, необходимой для преодоления барьера.

На приведённом изображении участок BNC является потенциальным барьером для частицы с энергией E1. Потенциальным барьером для частицы с энергией E2 служит участок от нуля до точки D, так как частица не в состоянии подойти к началу координат ближе, чем координата точки D.

В классической механике, в случае, когда частица не обладает энергией, большей максимума для данного барьера, она не сможет преодолеть потенциальный барьер. В квантовой механике, напротив, возможно преодоление барьера с определённой вероятностью (туннельный эффект).

Потенциа́льная я́ма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Если в потенциальную яму попала частица, энергия которой ниже, чем необходимая для преодоления краёв ямы, то возникнут колебания частицы в яме. Амплитуда колебаний будет обусловлена собственной энергией частицы. Частица, находящаяся на дне потенциальной ямы, пребывает в состоянии устойчивого равновесия, то есть при отклонении частицы от точки минимума потенциальной энергии возникает сила, направленная в противоположную отклонению сторону. Если частица подчиняется квантовым законам, то даже несмотря на недостаток энергии она с определённой вероятностью может покинуть потенциальную яму (явление туннельного эффекта).

Задача 5.12.

Д ано: Решение

=

=

=0,666-0,276=0,39

=0,666+0,552=1,218

Ответ:

6. Строение Атома.

Краткое теоретическое описание.

Атом (от греческого atomos - неделимый) — одноядерная, химически неделимая частица химического элемента, носитель свойства вещества. Из атомов состоят вещества. Сам атом состоит из положительно заряженного ядра и отрицательно заряженного электронного облака. В целом атом электронейтрален. Размер атома полностью определяется размером его электронного облака, поскольку размер ядра ничтожно мал по сравнению с размером электронного облака. Ядро состоит из Z положительно заряженных протонов (заряд протона соответствует +1 в условных единицах) и N нейтронов, которые не несут на себе заряда (протоны и нейтроны называют нуклидами). Таким образом заряд ядра определятся только количеством протонов и равен порядковому номеру элемента в таблице Менделеева. Положительный заряд ядра компенсируется отрицательно заряженными электронами (заряд электрона -1 в условных единицах), которые формируют электронное облако. Таким образом количество электронов равно количеству протонов. Массы протонов и нейтронов равны (соответственно 1 и 1 а.е.м.). Масса атома определятся массой его ядра, поскольку масса электрона примерно в 1850 раз меньше массы протона и нейтрона и в расчетах редко учитывается. Количество нейтронов можно узнать по разности между массой атома количеством протонов (N=A-Z).

Поскольку в ядре атома сосредоточена практически вся масса, но его размеры ничтожно малы по сравнению с общим объемом атома, то ядро условно принимается материальной точкой покоящейся в центре атома, а сам атом рассматривается как система электронов. При химической реакции ядро атома не затрагивается (кроме ядерных реакций), как и внутренние электронные уровни, а участвуют только электроны внешней электронной оболочки. По этой причине необходимо знать свойства электрона и правила формирования электронных оболочек атомов.

Электрон является квазичастицей проявляя корпускулярно-волновой дуализм. Он одновременно является и частицей (корпускула) и волной. К свойствам частицы можно отнести массу электрона и его заряд, а к волновым свойствам - способность к дифракции и интерференции. Связь между волновыми и корпускулярными свойствами электрона отражены в уравнении де Бройля:

где - длина волны, — масса частицы, — скорость частицы, — постоянная Планка = 6,63·10-34 Дж·с.

Для электрона невозможно рассчитать траекторию его движения, можно говорить только о вероятности нахождения электрона в том или ином месте вокруг ядра. По этой причине говорят не об орбитах движения электрона вокруг ядра, а об орбиталях - пространстве вокруг ядра, в котором вероятность нахождения электрона превышает 95%. Для электрона невозможно одновременно точно измерить координату и скорость (принцип неопределенности Гейзенберга).

, где - неопределенность координаты электрона, -погрешность измерения скорости, ħ=h/2π=1.05·10-34 Дж·с

Чем точнее мы измеряем координату электрона, тем больше погрешность в измерении его скорости, и на оборот: чем точнее мы знаем скорость электрона, тем больше неопределенность в его координате.

Наличие волновых свойств у электрона позволяет применить к нему волновое уравнение Шредингера.

где — полная энергия электрона, - потенциальная энергия электрона, физический смысл функции - квадратный корень от вероятности нахождения электрона в пространстве с координатами x, y и z (ядро считается началом координат).

Представленное уравнение написано для одноэлектронной системы. Для систем, содержащих более одного электрона принцип описания остается прежним, но уравнение принимает более сложный вид. Графическим решением уравнения Шредингера является геометрия атомных орбиталей. Так s-орбиталь имеет форму шара, p-орбиталь - форму восьмерки с "узлом" в начале координат (на ядре), где вероятность обнаружения электрона стремиться к нулю.

В рамках современной квантово-механической теории электрон описывается набором квантовых чисел: n, l, ml, s и ms. Согласно принципу Паули в одном атоме не может быть двух электронов с полностью идентичным набором всех квантовых чисел.

Главное квантовое число n определяет энергетический уровень электрона, то есть на каком электронном уровне расположен данный электрон. Главное квантовое число может принимать только целочисленные значения больших 0: n=1;2;3... Максимальное значение n для конкретного атома элемента соответствует номеру периода, в котором расположен элемент в периодической таблице Д.И.Менделеева.