Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпоры по матану [теория].doc
Скачиваний:
87
Добавлен:
02.05.2014
Размер:
1.73 Mб
Скачать

В.5 ,6 Определители, их свойства и вычисление

Каждой квадратной матрице A порядка n можно поставить в соответствие единственное число, которое вычисляется по определенному правилу. Это число называется определителем (или детерминантом) матрицы A и обозначается |A|, или det A, или Δ(A). Порядок матрицы A является и порядком ее определителя. Определители порядка 1-3 определяются, соответственно, равенствами:

,

, (3)

.

Минором Mij элемента aij , , называется определитель (n-1)-го порядка, который состоит из элементов матрицы, полученной из данной после «вычеркивания» i- той строки и j-того столбца.

Алгебраическим дополнением элемента aij называется число Аij=(-1)i+jMij. Определитель порядка n, где

, определяется как число.

Последнее равенство называют разложением определителя по элементам первой строки. Оно есть обобщение равенств (3).

Свойства определителей:

1) ;

2) ;

3) общий множитель элементов какой-либо строки (столбца) можно вынести за знак определителя;

4) перестановка двух строк (столбцов) меняет знак определителя на противоположный;

5) |A|=0, если выполняется одно из следующих условий:

  • в определителе есть нулевая строка (нулевой столбец),

  • в определителе есть пропорциональные строки (столбцы),

  • в определителе есть строки (столбцы), являющиеся линейной комбинацией соответствующих элементов других строк (столбцов);

6) если к элементам одной строки (столбца) определителя прибавить линейную комбинацию соответствующих элементов других строк (столбцов), то значение определителя не изменится.

Основные методы вычисления определителей.

1. Для определителей 3-го порядка удобно использовать правило треугольников, которое схематично можно изобразить следующим образом:

Линии соединяют по три элемента, которые умножаются, а затем произведения складываются.

2. Определитель порядка n может быть вычислен разложением по любой строке (столбцу):

.

3. Метод эффективного понижения порядка определителя: используя свойства определителя, его преобразуют к такому виду, чтобы все элементы некоторой строки (столбца) определителя, кроме одного, были нулями, затем вычисляют определитель разложением по этой строке (столбцу).

4. Метод приведения к треугольному или диагональному виду с использованием свойств определителя, когда определитель равен произведению диагональных элементов.

.

В. 7 Обратная матрица. Ранг матрицы

Произведением матрицы Al×m на матрицу Bm×n называется матрица элементы которой

.

Для получения элемента матрицы – произведения умножают последовательно каждый элемент строки матрицы А на каждый элемент j-го столбца матрицы В и находят сумму этих произведений.

Свойства операции умножения матриц:

В общем случае из существования AB не следует существование BA. Даже если оба эти произведения определены, они не всегда равны. Матрицы, для которых называются коммутативными.

Квадратная матрица B, удовлетворяющая совместно с заданной матрицей A того же порядка равенствам называется обратной матрицей к A и обозначается A–1. Обратная матрица A–1 существует при условии, что A – невырожденная матрица, т. е.

Обратную матрицу можно вычислить следующими способами.

1-й способ. Используют формулу

(4)

где С – матрица, составленная из алгебраических дополнений соответствующих элементов матрицы A.

2-й способ. Для данной матрицы A n-го порядка строится прямоугольная размера матрица путем приписывания к A справа единичной матрицы n-го порядка; затем с помощью элементарных преобразований над строками матрица приводится к виду . Тогда

Рангом матрицы A размера называется максимальный порядок отличных от нуля ее миноров. При этом любой ненулевой минор порядка называется базисным минором матрицы A.

Основные методы нахождения ранга матрицы A.

Метод окаймляющих миноров

Если в матрице A найден ненулевой минор Mk порядка k, а все окаймляющие его миноры )-го порядка равны нулю, то ранг матрицы равен k ().

Метод элементарных преобразований

Используя элементарные преобразования строк, матрицу приводят к трапециевидной или треугольной форме, далее ранг находят по определению.

Как частный случай последнего метода, может быть рассмотрен метод нулей и единиц: элементарными преобразованиями строк матрицу приводят к эквивалентной, состоящей или из нулевых строк и столбцов, или из строк и столбцов, в которых содержится ровно одна единица, а остальные элементы – нулевые. Количество единиц в такой матрице равно ее рангу.

В.8,9,10Системы линейных уравнений

Система линейных алгебраических уравнений (или линейная система) имеет вид:

где aij и bj –заданные числа.

Систему (17) можно записать в матричной форме

(8)

где А – матрица системы, состоящая из коэффициентов;

B матрица-столбец свободных членов;

X – матрица-столбец неизвестных,т. е. ,, .

Решением системы (7) называется совокупность n чисел , которые после подстановки в уравнения системы вместо соответствующих неизвестных обращают каждое уравнение системы в верное числовое тождество.

Система (7) называется совместной, если у нее существует хотя бы одно решение, в противном случае она называется несовместной. Совместная система (7) называется определенной, если она имеет одно решение и неопределенной, если более одного решения. Две системы называются эквивалентными (равносильными), если множества их решений совпадают.

Ответ на вопрос о совместимости системы дает теорема Кронекера-Капелли: для того чтобы система (7) была совместной, необходимо и достаточно, чтобы

где расширенная матрица системы (7), т.е. матрица свободных членов.

Рассмотрим систему , имеющую вид: (9)

Определителем системы (9) называется определитель матрицы этой системы (состоящий из коэффициентов: , Если то система называется невырожденной; если - вырожденной.

Методы решения невырожденных систем используются для решения линейных систем (9), состоящих из n уравнений с n неизвестными из которых .

Метод обратной матрицы состоит в решении матричного уравнения (8) по формуле

(10)

Метод Крамера: для нахождения неизвестных необходимо использовать формулы

(11)

где – определитель, получаемый из определителя системы (8) заменой i-го столбца столбцом свободных членов.

Формулы (11) называются формулами Крамера.

Соседние файлы в предмете Алгебра и начала анализа