Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
органика.doc
Скачиваний:
4
Добавлен:
23.09.2019
Размер:
364.03 Кб
Скачать

Ковалентные связи углерода

Число групп, связанных с углеродом

Тип гибридизации

Типы участвующих химических связей

Примеры формул соединений

4

sp3

Четыре  - связи

3

sp2

Три   - связи и одна  - связь

2

sp

Две   - связи и две  -связи

H–C C–H

Типы связей в органических соединениях

1. Ковалентная – это связь, образованная за счет обобществления

электронов двух атомов. Имеется два механизма образования ковалентной

связи:

а) при ковалентном механизме образования каждый из атомов, образующих

связь предоставляет по одному электрону:

1ē + 1ē (ē - электрон)

Примеры

Н-Н – ковалентная неполярная

Н-Cl – ковалентная полярная;

Полярность связи (поляризация связи) обозначается в органической химии с

помощью частичных зарядов ( δ ) и соответствует разнице в

электроотрицательности элементов

б) при донорноакцепторном механизме образования один из атомов

предоставляет неподеленную пару электронов (НПЭ), а другой – вакантную

орбиталь.

Семиполярная – ковалентная связь, дополненная электростатическим

взаимодействием атомов (образована по донорно-акцепторному механизму).

Ионная – электростатическая связь между противоположно заряженными

ионами.

В органических соединениях из-за значительной разницы в

электроотрицательности элементов ионными являются связи между атомами

углерода (в sp-гибридизации), кислорода, азота, серы и щелочными и

щелочноземельными металлами.

Примеры

H-C =_C:Na ацетиленид натрия

3.Строение органических соединений: сопряжение и ароматичность, электронные эффекты.

В молекулах алифатических соединений, содержащих сопряженные связи, а также в ароматических молекулах взаимное влияние атомов осуществляется преимущественно другим путем, качественно отличающимся от индукционного взаимного влияния атомов. Для того чтобы уяснить характер такого влияния, рассмотрим, например, свойства систем с сопряженными двойными связями в жирных соединениях.

Среди химических особенностей систем с двумя сопряженными двойными связями наиболее характерным является протекание реакций 1,4-присоединения. В таких реакциях атакующие молекулы или их части (ионы, радикалы) присоединяются к крайним (первому и четвертому) атомам сопряженной системы, причем между вторым и третьим атомами возникает новая двойная связь, например:

Кроме того, в целом такие системы более реакционноспособ-ны (в первую очередь за счет повышенной реакционной способности первого и четвертогоатомов) и могут вступать в реакции, не свойственные молекулам с изолированными двойными связями. Таково восстановление систем

водородом в момент выделения, присоединение к системам С=С—С=С щелочных металлов и их металлоорганических соединений, присоединение анионовCN-, SO3H- и R- (при действии RMgX) к четвертому (углеродному) атому системы О=С—С=С и др.

Таким образом, химические свойства сопряженных систем показывают, что содержащиеся в них двойные связи отличаются от изолированных двойных связей. Это отличие обусловлено особым характером взаимного влияния ненасыщенных атомов сопряженных систем. Такой специфический вид взаимного влиянияатомов, качественно отличный от индукционного влияния, может быть интерпретирован как результат взаимодействия π-электронов двух или нескольких сопряженных двойных связей. Вследствие этого такой вид взаимного влияния атомов предложено называть сопряжением связей.

Ароматичность — особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одномсопряжении.

Ароматичность не имеет непосредственного отношения к запаху органических соединений, и является понятием, характеризующим совокупность структурных и энергетических свойств некоторых циклических молекул, содержащих систему сопряженных двойных связей. Термин «ароматичность» был предложен потому, что первые представители этого класса веществ обладали приятным запахом.

К ароматическим соединениям относят обширную группу молекул и ионов разнообразного строения, которые соответствуюткритериям ароматичности.

Кроме бензольного кольца и его конденсированных аналогов ароматические свойства проявляют многие гетероциклы — гетарены: пиррол, фуран, тиофен, пиридин, индол, оксазол и другие. При этом в сопряженную систему шестичленных гетероциклов гетероатом отдает один электрон (по аналогии с углеродом), в 5-атомных — неподеленную электронную пару.

Одним из простейших ароматических соединений является бензол. Эти соединения играют большую роль в органической химии и обладают многими химическими свойствами, свойственными только этому классу соединений.

Ароматизация — образование ароматических соединений из соединений других типов.

В промышленности широко применяют процессы ароматизации продуктов переработки нефти для увеличения содержания в них ароматических углеводородов. Наибольшее значение имееткаталитический риформинг бензиновых фракций.

Процессы ароматизации протекают в условиях биохимического синтеза в растениях, животных, грибах и микроорганизмах. Одним из наиболее существенных метаболических путей, неотъемлемой частью которого выступают реакции ароматизации, является шикиматный путь.

Электронные эффекты - смещение электронной плотности в молекуле, ионе или радикале под влиянием заместителей.

Заместителем считается любой атом (кроме водорода) или группа атомов, связанные с атомом углерода.

Различают индуктивный (I) и мезомерный (M) эффекты заместителей.

Индуктивный эффект — смещение электронной плотности по цепи σ-связей, которое обусловлено различиями в электроотрицательностях атомов.

Из-за слабой поляризуемости σ-связей I-эффект быстро затухает с удалением от заместителя и через 3-4 связи становится практически равным 0.

Индуктивный эффект называют отрицательным (–I), если заместитель уменьшает электронную плотность на атоме углерода, с которым связан этот заместитель. При этом заместитель приобретает частичный отрицательный заряд (δ-), а атом углерода – частичный положительный заряд (δ+). Например:

Индуктивный эффект называется положительным (+I), если заместитель увеличивает электронную плотность на атоме углерода, индуцируя на нем частичный отрицательный заряд δ-, сам при этом приобретая заряд δ+. Направление (знак) I-эффекта заместителя качественно оценивается путем сравнения со стандартом — атомом водорода, индуктивный эффект которого принят за 0.

  • I-эффект проявляют заместители, которые содержат более электроотрицательные атомы, чем атом углерода:

-F, -Cl, -Br, -OH, -NH2, -NO2, >C=O, -COOH и др.

  • +I-эффект проявляют заместители, содержащие атомы с низкой электроотрицательностью:

-Mg-, -Li; алифатические углеводородные радикалы (-CH3, -C2H5

Мезомерный эффект - смещение электронной плотности по цепи делокализованных (сопряженных) π-связей

Этот эффект проявляют заместители, связанные с sp2- или sp-гибридизованным атомом. Благодаря подвижности π-электронов, М-эффект передается по цепи сопряжения без затухания. +М-эффектом обладают заместители, повышающие электронную плотность в сопряженной системе. К ним относятся группы, которые содержат атомы с неподеленной парой электронов, способные к передаче этой пары электронов в общую систему сопряжения. +М-эффект характерен для групп -OH и -NH2. Так, в молекуле фенола C6H5OH группа -OH проявляет +М-эффект за счет участия одной из неподеленных электронных пар атома кислорода в системе сопряжения:

М-эффект проявляют заместители с электроотрицательными атомами и смещающие электронную плотность на себя. –М-эффект характерен для групп -CH=O, -COOH, -NO2. Хотя эти группы имеют неподеленные электронные пары, пространственное расположение орбиталей с этими электронами не позволяет им вступать в систему сопряжения. Таким образом, в данном случае заместитель может лишь оттягивать электроны из общей системы сопряжения за счет своей более высокой электроотрицательности.

Для определения знака М-эффекта полезно строить атомно-орбитальные модели, отражающие пространственную ориентацию орбиталей и возможности их перекрывания. Например:

Направление смещения электронной плотности под влиянием М-эффекта обозначается изогнутыми стрелками.