Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пак.docx
Скачиваний:
19
Добавлен:
24.09.2019
Размер:
189.18 Кб
Скачать

8) Пероксисомы. Строение и функции.

Пероксисомы

Пероксисомы (микротельца) по строению сходны с лизосомами. Они состоят из матирикса и нуклеотида. Матрикс пероксисом содержит до 15 ферментов. Наиболее важные из них пероксидаза и каталаза, оксидаза D-аминокислот и уратроксидаза. Нуклеотид пероксисомы соответствует области конденсации ферментов. Пероксисомы образуются в ЭПС, отпочковываясь от агранулярной ЭПС, их ферменты частично синтезируются в гранулярной ЭПС, частично в гиалоплазме. Мембрана пероксисом непроницаема для ионов и низкомолекулярных субстратов.

Пероксисомы – главный центр образования кислорода клетки. В результате окисления аминокислот, углеводов образуется Н2О2, которая благодаря каталазе распадается на воду и О2. Крупные пероксисомы печени и почек играют важную роль в обезвреживании ряда веществ. Помимо этого они участвуют в катаболизме (в обмене аминокислот, оксалата и полиаминов).

В настоящее время открыт класс наследственных болезней – пероксисомные болезни, развитие которых обусловлекнно дефектом пероксисом. При этих болезнях поражаются органы, развиваются нарушения нервной системы, вызывающих смерть больных в детском возрасте.

9) Митохондрии. Энергетический обмен в клетке.

Митохондрии

Митохондрии являются универсальным мембранными органоидами клеток. Митохондрии имеют 2 мембраны – наружную и внутреннюю. Между этими мембранами нахлдится межмембранное пространство. В некоторых участках мембраны образуют контактные сайты. В митохондрии находится митохондриальный матрикс. В нем локализуются молекулы митохондриальной ДНК, собственные рибосомы, РНК, белки, низкомолекулярные метаболиты.

В наружной мембране содержится более 80% липидов и менее 20% белков, а во внутренней – наоборот. Среди белков наружной мембраны имеются порины, формирующие поры. Через них из гиалоплазмы поступают молекулы определенного размера. В результате этого наружная мембрана имеет неспецифическую проницаемость. В зоне контактных сайтов локализуются специальные рецепторы и канальные белки. Внутренняя мембрана образует кристы. На них со стороны митохондриального матрикса локализуются грибовидные тельца – белковые компоненты, которые осуществляют синтез АТФ.

Симптомы большинства митохондриальных болезней проявляются с возрастом, что вероятно, обусловлено накоплением мутаций, осуществляемыми Н2О2 и О2. Т.к. эти вещества генерируются в максимальных количествах при окислительном фосфолирировании, чаще поражаются органы, наиболее нуждающиеся в митохондриальной энергии (ЦНС, сердце, скелетные мышцы, почки, печень, островки Лангерганса).

Жизненный цикл митохондрий около 10 суток, их разрушение происходит путем аутофагии, а гибнущие органеллы замещаются новыми, которые формируются путем пеершнуровки предшествующих. Репликация митохондриальной ДНК происходит в любые фазы клеточного цикла независимо от ядерной ДНК.

Функции митохондрий:

  1. Дыхательный и энергетический центр клетки – в них усваивается кислород необходимый для третьего (аэробного) этапа диссимиляции.

  2. Синтез своих ДНК, РНК, части белков.

Энергетический обмен в клетке.

Основой всех проявлений жизнедеятельности клеток является обмен веществ с окружающей средой. Благодаря биохимическим реакциям, все процессы клеток являются строго упорядоченными. Клетка – высокоорганизованная структура, в которой экономично расходуются материалы и энергия, процессы идут с высоким КПД (КПД митохондрий 45-60%, хлоропластов – 25%).

АТФ + Н2О = АДФ + Н3РО4

Обмен веществ состоит из ассимиляции и диссимиляции. Ассимиляция (анаболизм) – пластический обмен, при котором происходит синтез всех органических веществ. Все биосинтезы идут с поглощением энергии, которая запасается в виде АТФ при диссимиляции (катаболизме) – энергетическом обмене.

Этапы энергетического обмена:

Подготовительный – происходит расщепление сложных органических веществ до более простых под действием пищеварительных ферментов. Высвобожденная энергия рассеивается в виде тепла.

  1. В анаэробных условиях (без О2) у анаэробов субстрат расщепляется с образованием конечных продуктов еще богатых энергией.

    • Гликолиз – расщепление глюкозы ферментами клетки в отсутствии кислорода. В результате 40% энергии глюкозы запасется в 2 молекулах АТФ, 60% утрачивается в виде теплоты. Гликолиз осуществляется в гиалплазме клетки и не связан с мембранами.

С6Н12О6 + 2АДФ + 2Н3РО4 = 2С3Н6О3 + 2АТФ +2Н2О

Спиртовое брожение

Глюкоза →пируват→ацетальдегид→этанол. КПД = 29%.

С6Н12О6 + 2АДФ + 2Н3РО4 = 2С2Н5ОН + 2АТФ +2Н2О + 2СО2

  • В аэробных условиях (с О2) – субстрат без остатка расщепляется до бедных энергией неорганических веществ с высвобождением большого количества энергии. Протекает в 2 этапа:

А. Аналогично гликолизу, но только до пирувата С3Н4О3 (субстратное фосфолирирование):

С6Н12О6 = 2С3Н4О3 + 2АТФ + 2НАДН + Н+

В. Пируват и НАДН2 поступают в митохондрии, где пируват окисляется до ацилКоА.

С3Н4О3 + КоАSH + HAД+ = СН3СО3SКоА + НАДН2 + СО2

Ацетилкоэнзим А направляется в ЦТК (цикл трикарбоновых кислот (цикл Кребса), а НАДН в дыхательную цепь. ЦТК идет в матриксе митохондрий: ацетилКоА присоединяется к щавелевоуксусной кислоте и т.д.

 В результате образуется:

АТФ + 2СО2 +КоА = 3НАДН + 3Н+ + ФАДН2

ФАД – флавинадениндинуклеотид.

Вся энергия глюкозы оказывается сосредоточенной в переносчиках НАДН +Н+ и ФАДН2. Они переносят по 2Н+ цепь переноса электронов и затем снова могут присоединять Н+.

Атомы Н переносятся через внутреннюю мембрану митохондрий и на ее наружней поверхности разделяются на Н+ и электрон.

Реакции образования АТФ:

  1. Н поступает на внутреннюю поверхность митохондрий, образуют кристы:

Н = Н+ + е-

А. Н+ выходят из клетки на поверхность. Для Н+ мембрана проницаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

В. Электроны переносятся на внутреннюю поверхность мембраны крист и присоединяются и присоединяются к кислороду с помощью фермента оксидизы, образуя:

О2 + е- = О2-

С. Н+ и О2- создают разноименно заряженное электрическое поле, когда Δφ = 200мВ начинает действовать протонный канал. Он возникает в АТФ-синтеазе, которая встроена во внутреннюю мембрану митохондрий.

  1. Через канал Н+ устремляются внутрь митохондрий, создавая высокий уровень энергии, которая идет на синтез АТФ из АДФ и фосфата.

Итог: при расщеплении 1 молекулы глюкозы образуется 38 молекул АТФ, с запасом энергии 1520 кДж. Образовавшиеся АТФ выходят из митохондрий.

Значение АТФ в энергетическом обмене:

  1. Образовавшаяся молекула АТФ выходит из митохондрий и участвует во всех процессах, требующих энергию.

    1. В процессах синтеза веществ.

    2. Участвует в процессах движения.

    3. В процессе деления клетки.

    4. Транспорт веществ.

При расщеплении АТФ отдает энергию (1 фосфатная связь заключает 40 кДж). Образовавшаяся АДФ и фосфат возвращаются в митохондрии.

Автотрофные и гетеротрофные организмы.

По питанию организмы делятся на автотрофные и гетеротрофные. Автотрофы ассимилируют свои органические вещества из неорганических (Н2О, СО2, СН4) используя: энергию солнца – фотоавтотрофы (зеленые растения, цианобактерии), или энергию химических реакций – хемоавтотрофы (хемосинтезирующие бактерии). Гетеротрофы – используют органические вещества, поступающие с пищей, расщепляются до мономеров, для процессов ассимиляции используется энергия, высвобожденная при диссимиляции органических веществ.

10) Немембранные органойды клетки. Строение и функции. Клеточные включения. Рибосомы

Рибосомы – органоиды общего значения, не имеющие мембранного строения. Место синтеза белка. D=15-35 нм. Находятся в цитоплазме, пластидах, митохондриях. Большая часть рибосом образуется в ядрышке ядра – в виде 2 субъединиц, которые выходят из ядра и соединяются в рибосому, которая состоит из большой и малой субъединицы. В состав каждой субъединицы входят р-РНК и белок.

Рибосомы, соединяясь с и-РНК при синтезе белка по 4-40, образуют полисомы (полирибосомы).

Рибосомы связаны с гранулярной ЭПС, синтезируют обычно секретирующие белки, или остаются в пределах мембран внутри клетки.

Функции рибосом – синтез белков.

Клеточный центр.

Клеточный центр (центрисома) – органоид немебранного строения в клетках животных и низших растений. Находится вблизи ядра, состоит из 2 центриолей – телец цилиндрической формы длиной 500 нм., расположенных перпендикулярно друг другу. Стенки образованы 9 триплетами микротрубочек. Чентрисома окружена более светлой цитоплазмой – центросферой.

Функция:

Центр формирования микротрубочек веретена деления. При делении клетки центрисома делится на 2 части и одна центрисоль отходит к одному полюсу клетки, другая – к другому и образуют веретена деления, обеспечивая равномерное распределение хромосом между дочерними клетками.  Цитоскелет состоит из:  Микрофибрилл, или микрофиламентов

  • Скелетных фибрилл, или промежуточных филаментов

  • Микротрубочек

Микрофиблиллы - нитивидные структуры, состоящие из: