Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_po_teor_veroyatn.docx
Скачиваний:
2
Добавлен:
27.09.2019
Размер:
213.6 Кб
Скачать

7 Формула полной вероятности.

Предположим, что событие А происходит одновременно с одним из событий H1, H2,…,Hn, попарно несовместных и образующих полную группу событий.Т.к. заранее неизвестно, с каким из событий Hi событие А произойдет, то H1…Hn – гипотезы. Вероятность P(A)=P(H1)P(A/H1)+P(H2)P(A/H2)+…+P(Hn)P(A/Hn).Или P(A)=

Доказательство:А=AH1+AH2+…+AHn. Т.к. события Hi попарны и несовместны, то будут попарными и несовместными и события AHi. По теореме несовместных событий получаем P(A)=P(AH1+AH2+ …+AHn)= P(H1)+…+P(Hn). P(A)=P(H1)P(A/H1)+P(H2)P(A/H2)+…+P(Hn)P(A/Hn).

Замечание1: Т.к. H1,…,Hn образуют полную вероятность, то сумма вероятностей равна 1: P(H1)+ P(H2)+…+ P(Hn)=1.

Замечание2: Вероятности гипотез определяются до опыта и называются априорными.

.Формула Байеса. Предположим, событие А произошло. Какизменятся при этом вероятности гипотез P(AB)=P(A)*P(B/A), P(AB)=P(B)P(A/B), P(AHi)=P(A)P(Hi/A)=P(Hi)P(A/ Hi). Следовательно P(Hi/A)= , i = .Заменив по формуле P(A)=P(H1)P(A/H1)+P(H2)P(A/H2)+…+P(Hn)P(A/Hn) получим P(Hi/A)=. Эти формулы называют формулами Байеса. Они позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

8 .Ф-я распр. вер.СВ. Определ. и св-ва. Ф-я F(х) наз. ф-я распр. СВ Х, если F(х)=р (Х<х) для всех хє(-∞;+∞)

Х<х означ. -∞<X<x, т.е. ф-я распр. поках. вер. попадания СВ Х на интервалм(-∞;х) левее точки х. Св-ва ф-ции распр:

  1. 0≤ F(х)≤1. F(х)=Р(Х<х) ≥0

  2. F(х)-неубывающая. х1<x2, F(х1)≤ F(х2)

A={x<x1} B={x1≤x<x2} C={x<x2} C=A+B AиB- несовм. По теор. слож. им.

Р(С)=P(A)+P(B)= P(X<x1)+P(x1≤x<x2)

P(C)= P(X<x2)=F(x2)

P(X<x1)=F(x1)

P(x1≤x<x2)=F(x2)- F(x1)≥0

F(x2)≥ F(x1) x2>x1

  1. Вер. попадания СВ на полуинтервал х=[x1,x2] P(x1≤x<x2)= F(x2)-F(x1)

4 F(-∞)=0 F(+∞)=1 F(-∞)=lim F(x) F(+∞)=lim F(x) Док-во F(x)=P(X<x), F(-∞)=P(x<-∞)=P()=0, F(+∞)=P(x<+∞)= P(-∞<x<+∞)=P(Ω)=1.

5. F(x)-непрерывна слева,

.Ф-ция распределения ДСВ Ф-ция р ДСВ =F(x)=P(X<X)= Σxi<x P(X=Xi), суммир. ведется по всем х i< x

1)(-∞,х1]эХ 0,x≤x1

х х1 х2 … хn

р р1 р2 … рn

x1 x2 xn

2)х1< x ≤ x2 F(x)= p1,x1<x≤x2

p1+p2, x2<x≤x3

1,x>xn

9 Непрерывные случайные величины

Определение 2: Распределение случайной величины называется непрерывным, а сама случайная величина - непрерывной случайной величиной, если для любого

где интегрируемая по Лебегу функция. Функция называется плотностью распределения случайной величины

Теорема 1: Для того чтобы случайная величина была непрерывной случайной величиной, необходимо и достаточно, чтобы для любого , (1) Замечание 1: Из представления (1) видно, что функция распределения непрерывной случайной величины является непрерывной функцией.. Свойства плотности распределения:1) , 2) почти всюду,3) для любых х, являющихся точками непрерывности плотности.. Теорема 2: Для того, чтобы функция p = p(x) была плотностью распределения некоторой случайной величины , необходимо и достаточно, чтобы она удовлетворяла свойствам 1) и 2) плотности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]