Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vys_matem_1_kurs_2_sem_2_chast_uskorenneki.doc
Скачиваний:
8
Добавлен:
09.11.2019
Размер:
610.3 Кб
Скачать

Вариант 9.

1. В декартовой прямоугольной системе координат даны вершины пирамиды , C1, D1. Найдите:

а) длину ребра ;

б) косинус угла между векторами и ;

в) уравнение ребра ;

г) уравнение грани С1;

если

2. Решите систему линейных уравнений

а) методом Крамера;

б) методом Гаусса;

3. На витрине 32 одинаковых булочки. Известно, что среди них четверть булочек с изюмом, остальные с корицей. Случайным образом отбирают три булочки. Вычислите вероятность того, что: а). Все выбранные булочки с изюмом; б). Только одна булочка с изюмом.

4. Укупорка банок производится двумя автоматами с одинаковой производительностью. Доля банок с дефектом укупорки для первого автомата составляет 1%, а для второго 0,5%. Какова вероятность того, что наугад взятая банка будет иметь дефект укупорки?

5. Задан закон распределения дискретной случайной величины X:

Х

-2

-1

0

1

2

3

4

р

0,08

0,1

0,14

0,1

1

0,1

0,1

р

Найти:

а) неизвестную вероятность р;

б) математическое ожидание М, дисперсию D и среднее квадратическое отклонение  данной случайной величины;

в) функцию распределения F(x) и построить ей график;

г) закон распределения случайной величины , если её значения заданы функциональной зависимостью

6. Установлено, что третья часть покупателей, при посещении модного магазина приобретает себе одежду. Какова вероятность того, что из 150 посетителей магазина:

а) ровно 50 человек приобретут товар;

б) от 100 до 120 человек приобретут товар?

Методические рекомендации к выполнению контрольной работы Векторная алгебра и элементы аналитической геометрии

Для решения задачи 1 и задачи 2 необходимо изучить следующую литературу:

Глава 3, стр. 63-74,

Глава 4, стр. 95-101

Глава 9. § 1-13. Стр. 222-251

Теперь рассмотрим применение изученных формул на примерах.

ЗАДАЧА 1.

В декартовой прямоугольной системе координат даны вершины пирамиды .

Найдите:

а) длину ребра ;

б) косинус угла между векторами и ;

в) уравнение ребра ;

г) уравнение грани С1;

если

Решение.

а ) Найдем координаты вектора А1В1 по формуле

где - координаты точки А1, -координаты точки В1.

Итак ={1-(-2);-3-2;0-2}={3;-5;-2}. Тогда = = .

Итак, длина отрезка, (или длина вектора ) равна . Это и есть искомая длина ребра.

б) Координаты ={3;-5;-2} уже известны, осталось определить координаты вектора ={6- (-2); 2 - 2; 4 - 2}= {8,0; 2}.

Угол между векторами и вычислим по формуле

cos φ =

г де скалярное произведение векторов А1В1 и А1С1 равно ( , )=3·8+(-5)·0+(-2)=24+0-4=20,

 = ,  = = .

Итак, cos φ = 20 = 10

·

в) Координаты точки А1(-2,2,2) обозначим соответственно Х0 = -2, У0 = 2, Z0 = 2, а координаты точки В1(1,-3,0) через X1 = 1, У1 = -3, Z1 = 0 и воспользуемся уравнением прямой и пространстве, проходящей через две точки:

.

Следовательно, уравнение ребра имеет вид

.

г) Обозначим координаты векторов , и через Х1=3, У1= -5, Z1= -2 и Х2=8, У2= 0, Z2=2 соответственно. Векторное произведение данных векторов определяется формулой

·A1C1 = {Y1·Z2-Y2·Z1;Z1·X2-Z2·X1;X1·Y2-X2·Y2} =

= {(-5)·2-0·(-2);-2·8-2·3;3·0-8·(-5)}={-10,-22,40}

Так как данный вектор перпендикулярен грани С1, то можно воспользоваться уравнением плоскости, проходящей через точку (Х0 У0, Z0) перпендикулярно вектору {А;В;С}, которое имеет вид A·(X-X0)+B·(Y-Y0)+С·(Z-Z0)=0.

Подставим координаты точки А1 (Хо= -2, У0=2, Z0=2) и координаты перпендикулярного вектора А= -10, В= -22, С=40 в это уравнение:

- 10 ( X + 2 ) - 22 (У – 2) т 40 ( Z- 2) - 0. Раскроем скобки и приведем подобные члены - 10 х -22 у + 40z + (-20 + 44-80)=0. Итак, уравнение грани ,C1 имеет вид: -10х- 22у + 4О z-56=0 или -5х- lly + 20z-28=0.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]