Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vys_matem_1_kurs_2_sem_2_chast_uskorenneki.doc
Скачиваний:
8
Добавлен:
09.11.2019
Размер:
610.3 Кб
Скачать

Задача 2.

Решите систему линейных уравнений

а) методом Крамера;

б) методом Гаусса;

Решение.

а) Решим данную систему уравнений с помощью формул Крамера (см.[2] глава 10. стр. 268). Рассмотрим произвольную систему трех линейных уравнений с тремя неизвестными:

Решение.

а) Решим данную систему уравнений с помощью формул Крамера ( см. [2] глава 10, стр. 268).

Тогда , где

Так как Δx= -60; Δy= -60; Δz=60; Δ= -120, то x= ; y= ; z= .

6) решим данную систему уравнений методом Гаусса. Метод Гаусса состоит в том, что с помощью элементарных преобразований система уравнении приводится к равносильной системе ступенчатого (или треугольного) вида из которой последовательно, начиная с последнего уравнения, легко находят все неизвестные системы.

Составим расширенную матрицу данной системы.

Поменяем местами первую и вторую строки матрицы, чтобы в ее левом верхнем углу была единица. Получим матрицу.

Умножим каждый элемент первой строки матрицы на 4 и прибавим полученные числа к соответствующим элементам второй строки. Матрица примет вид.

Умножим каждый элемент первой строки матрицы на -3. и прибавим полученные числа к соответствующим элементам третьей строки. Получим:

Разделим каждый элемент второй строки матрицы на 4, чтобы второй элемент, стоящий на главной диагонали матрицы, стал равным 1.

Умножим каждый элемент второй строки матрицы на -8 и прибавим полученные числа к соответствующим элементам третьей строки:

Данная матрица соответствует системе уравнений , решение которой совпадает с решением исходной системы. Начинай с последнего уравнения, несложно найти все

неизвестные.

Действительно, так как z= = и y z= , то y ·

Отсюда, y - = = = . Из x-z=1 имеем =z+1= +1=

Ответ: x= , y= , z= .

Элементы теории вероятности и математической статистики

Для решения задачи 3 см. [5] глава 1. § 1—5.

Задача 3.

На складе университета хранится 28 одинаковых упаковок писчей бумаги. Известно, что в четырех из них содержится бумага более низкого качества. Случайным образом выбирают три упаковки бумаги, Вычислить вероятность того, что среди них;

А) нет упаковок с бумагой более низкого качества,

Б) есть одна упаковка такой бумаги.

Решение.

Рассмотрим два случайных события:

А – среди взятых трех упаковок нет упаковок с бумагой более низкого качества;

В - среди взятых трех упаковок есть одна упаковка с бумагой более низкого качества (и, следовательно, две – с бумагой более высокого качества).

Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 3 упаковки бумаги из 28 упаковок, то есть

= = = =13·9·28=3276 – числу сочетаний из 28 элементов по 3.

а) Подсчитаем число исходов, благоприятствующих интересующему нас событию (нет упаковок с бумагой более низкого качества). Это число исходов ровно числу способов, которыми можно извлечь 3 упаковки бумаги из 24 упаковок (столько упаковок содержит бумагу высшего сорта), то есть

= = = =11·23·8=2024

искомая вероятность равна отношению числа исходов, благоприятствующих событию А, к числу всех элементарных исходов:

Р(А)= = ≈0,62

б) Подсчитаем число исходов, благоприятствующих данному событию (среди трех упаковок бумаги ровно 1 упаковка содержит бумагу более низкого качества): две упаковки можно выбрать из 24 упаковок: = = = =276 способами, при этом одну упаковку нужно выбирать из четырех: = = =4 способами. Следовательно, число благоприятствующих исходов равно · =276·4=1104

Искомая вероятность равна отношению числа исходов, благоприятствующих событию В, к числу всех элементарных исходов Р(В)= = ≈0,34

Ответ: а)Р(А) =0,62; б) Р(В)=0,34.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]