Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Modeling of processes in technosphere.doc
Скачиваний:
47
Добавлен:
20.11.2019
Размер:
11.37 Mб
Скачать

12.2 Дробный факторный эксперимент

Число опытов в полном факторном эксперименте быстро возрастает с ростом числа факторов. Так, при трех факторах будем иметь 23 = 8 опытов, при 5 факторах – 25 = 32 опыта, а при 8 факторах уже 28 = 256 опытов. Это вызывает необходимость разработки методов отбора части переменных, наиболее существенно влияющих на поверхность отклика. Поэтому, хотя полный факторный план 2k является удобным с точки зрения простоты проведения анализа параметров функции регрессии, тем не менее при большом числе факторов его применяют редко. 0ри трех и более факторах количество опытов можно существенно сократить за счет потери части информации, не очень существенной при построении линейных моделей. Для этого вместо плана 2* следует использовать описанный ниже дробный факторный план 2k-p (2k-p k+1), который предназначен для реализации 2k-p опытов. Для построения дробных планов (реплик) используют матрицы полного факторного эксперимента. Дробные планы создают делением числа опытов полного факторного эксперимента на число, кратное двум. Так получают 1/2 реплики (полуреплику), 1/4 реплики (четвертьреплику) и т. д.

Вначале рассмотрим линейную функцию регрессии, зависящую от трех факторов:

(8)

Для оценки четырех коэффициентов b0 , b1, b2, b3 требуется провести четыре опыта, а проведение полного факторного эксперимента, состоящего из восьми опытов, позволяет несмещенно оценить не только общее среднее b0 и главные эффекты b1,b2, b3, но также и всевозможные взаимодействия первого и второго порядков, т. е. все параметры неполной кубической модели

(9)

содержащей восемь коэффициентов. Следовательно, восемь опытов, поставленных для оценки коэффициентов линейной модели (8), будут содержать в два раза больше информации, чем требуется.

Для оценивания параметров функции регрессии (8) можно построить план, предназначенный для проведения не восьми, а четырех опытов. Для этой цели факторы х1 и х2 следует варьировать, как в плане 22, а в качестве уровня фактора х3 нужно выбрать значение взаимодействия, т.е. х3=х1х2. Получим план, определяемый матрицей, приведенной в табл. 4.

Рассмотрим вопрос построения дробных реплик более подробно. Вернемся к функции регрессии (9). Матрица плана этой модели приведена в табл. 5.

Таблица 4

№ опыта

Матрица плана

X0

X1

X2

X3

1

+1

+1

+1

+1

2

+1

-1

+1

-1

3

+1

+1

-1

-1

4

+1

-1

-1

+1

Рассмотрите эту таблицу более внимательно и обратите внимание, что второй столбец таблицы совпадает с девятым, третий — с восьмым, четвертый — с седьмым, пятый — с шестым. Следовательно, при использовании этого плана нет различий между x0 и x1x2x3; x1 и x2x3; х2 и x1x3; х3 и х1х2, т. е.

(10)

На этом основании можно утверждать, что вместо отыскания оценок восьми параметров функции регрессии (3.10) можно найти оценки лишь четырех смешанных коэффициентов:

(11)

При этом главные эффекты, включая общее среднее, оцениваются независимо друг от друга, но смешиваются соответственно с эффектами взаимодействий второго и первого порядка. Если постулируется линейная модель (8), то эффекты взаимодействий считаются незначительными, а смешанные коэффициенты (11) превращаются в параметры модели (8).

Таким образом, полный факторный эксперимент 23 при постулировании линейной модели можно рассматривать как совокупность двух полуреплик. Представленный в табл. 5 план называют полурепликой или планом 23-1 полученным из полного факторного плана 23 путем приравнивания единице произведения x1x2x3, т.е.

(12)

Это соотношение называется определяющим для данной полуреплики. Другая полуреплика 23-1 получится из определяющего соотношения x1x2x3, т. е. если уровни фактора х3 устанавливать в соответствии с равенством х3= —x1x2.

Обратите внимание на различие в структуре планов, представленных в табл. 4 и 5 (столбцы 2...4) с одной стороны, и в табл. 3 – с другой. Это различие сделало намеренно и не имеет принципиального значения. Заполнение столбцов 2—5 полного факторного плана может быть произвольным при непременном условии неповторяемости знаков в пределах одной строки. Однако при составлении полуреплик важно, чтобы выполнялось условие (12) или условие х1x2x3= ‒ 1, т. е. для всех опытов данной полуреплики все строки в столбце для x1х2х3 имели одинаковый знак.

Для иллюстрации отмеченных положений рассмотрим конкретный пример. План полного факторного эксперимента и его результаты записаны в левой части (столбцах 1...6) табл. 5. Требуется составить уравнения регрессий для полного факторного эксперимента я для его дробных реплик, если известно, что функция отклика линейна (либо постулируется ее линейность).

Таблица 5

№ опыта

х0

х1

х2

х3

y

x1x2

x1x3

x2x3

x1x2x3

1

2

3

4

5

6

7

8

9

10

1

+1

-1

-1

-1

4

+1

+1

+1

-1

2

+1

+1

-1

-1

16

-1

-1

+1

+1

3

+1

-1

+1

-1

-4

-1

+1

-1

+1

4

+1

+1

+1

-1

8

+1

-1

-1

-1

5

+1

-1

-1

+1

8

+1

-1

-1

+1

6

+1

+1

-1

+1

20

-1

+1

-1

-1

7

+1

-1

+1

+1

0

-1

-1

+1

-1

8

+1

+1

+1

+1

12

+1

+1

+1

+1

Решение. Запишем уравнение регрессии для линейной поверхности отклика

(13)

Коэффициенты bi будем определять по формуле (3.4) в соответствии с приемами, указанными в пояснениях к этой формуле.

Вначале определим коэффициенты регрессии, используя данные полного факторного эксперимента (левую часть табл. 5). Будем иметь:

(14)

Построим дробные реплики, для чего заполним правую часть табл. 5 (столбцы 7...10) и выберем строки, у которых 10-й столбец имеет одинаковые знаки. В результате получим две полуреплики (таблица 6):

Таблица 6

№ опыта

x0

x1

x2

x3

y

1

2

3

4

5

6

Первая полуреплика

2

+1

+1

-1

-1

16

3

+1

-1

+1

-1

-4

5

+1

-1

-1

+1

8

8

+1

+1

+1

+1

12

Вторая полуреплика

1

+1

-1

-1

-1

4

4

+1

+1

+1

-1

8

6

+1

+1

-1

+1

20

7

+1

-1

+1

+1

0

Определим коэффициенты регрессии по дробным репликам.

Для первой полуреплики будем иметь:

b0 = (16 ‒ 4 + 8 + 12) / 4 = 8;

b1 = (16 + 4 ‒ 8 ‒ 12) / 4 = 6;

b2 = (-1б ‒ 4 ‒ 8 + 12) / 4=-4;

b3 = (-16 + 4 + 8 + 12) / 4 = 2.

Для второй полуреплики будем иметь

b0=(4 + 8 + 20 + 0) / 4=8;

bl=(-4+8+20-0)/4=6;

b2 =(-4+8-20+0)/4=-4;

b3 = (-4-8 + 20)/4=2.

Как и следовало ожидать, во всех трех случаях для линейной поверхности отклика получены одинаковые результаты.

На рис. 2 приведена схема полного трехфакторного эксперимента и его полуреплик. Цифрами отмечены номера опытов с указанием в скобках координат факторов x1, x2,x3. Точки 2, 3, 5, 8 соответствуют первой полуреплике, а цифры I, 4, 6, 7 – второй. Обратите внимание, что каждая из полуреплик наиболее полно охватывает опытные точки факторного пространства.

Рис. 2. Схема трехфакторного эксперимента

При большом числе факторов т для оценивания параметров линейной функции регрессии (1) можно строить дробные реплики высокой степени дробности. Так, при т=7 можно построить дробную реплику из полного факторного плана 23 для первых трех факторов, приравняв четыре остававшихся фактора к двухфакторным и трехфакторному взаимодействиям трех других факторов, положив, например

(15)

Такую реплику записывают как 27-4.

В общем случае дробную реплику обозначают через 2т-p, если р факторов приравнены к произведениям остальных т—p факторов, уровни которых выбраны согласно полному факторному плану. Дробную реплику 2т-p можно строить различными способами. Для анализа системы смешивания коэффициентов пользуются понятиями генерирующих и определяющих соотношений.

Генерирующими называют соотношения, с помощью которых построена дробная реплика. Так, для реплики, представленной в табл. 5, генерирующим является соотношение х3=x1х2, а это указывает, что фактор х3 занимает в матрице столбец, соответствующий взаимодействию x1x2. Для указанной выше реплики 27-4 генерирующим является соотношение (15).

Определяющим соотношением (определяющим контрастом) называют равенство, в левой части которого стоит единица, а в правой — какое-либо произведение факторов. Для дробной реплики 2т-p можно получить p различных определяющих соотношений из генерирующих путем умножения обеих частей последних на их левые части с последующей заменой i)2 на 1 (i=1, .., т). Другие определяющие соотношения получаются путем перемножения ранее полученных и выделения среди них новых. Например, для реплики (табл. 5) определяющим является соотношение (12).

Построим определяющие соотношения для реплики 27-4, задаваемой генерирующими соотношениями (15). Умножая обе части равенств (15) на их левые части, получаем четыре определяющих соотношения:

(16)

Попарное перемножение этих четырех соотношений дает шесть новых:

(17)

Перемножение каждой тройки из четырех соотношений (16) Дает еще три определяющих соотношения:

(18)

Наконец, перемножая все четыре соотношения (16), получаем

(19)

Легко понять, что кроме (16) – (19), других определяющих соотношений для рассмотренной реплики 2+7-4 нет.

Знание определяющих соотношений позволяет найти всю систему совместных оценок без изучения матрицы планирования дробной реплики. Для того чтобы определить, с какими взаимодействиями смешано данное, нужно на него умножить обе части всех определяющих соотношений.

Определим, например, с какими взаимодействиями смешан главный эффект b3 в дробной реплике 27-4, определяемой генерирующими соотношениями (15). Для этого умножим все определяющие соотношения (16) – (19) на х3. Получим

Следовательно, главный эффект b3 смешан с эффектами взаимодействий первого порядка с эффектами взаимодействий второго порядка третьего порядка четвертого порядка и пятого порядка

В конкретной практической ситуации для выбора подходящей дробной реплики полного факторного плана необходимо использовать все априорные сведения теоретического и интуитивного характера об объекте планирования с целью выделения тех факторов и произведений факторов, влияние которых на результаты измерений существенно. При этом смешивание нужно производить так, чтобы общее среднее b0 и главные эффекты b1,..., bm были смешаны с эффектами взаимодействий самого высокого порядка (так как обычно они отсутствуют) или с эффектами таких взаимодействий, о которых известно, что они оказывают несущественное влияние на результаты измерений. Отсюда следует, в частности, что недопустимо произвольное разбиение полного факторного плана 23 на две части для выделения полуреплики 23-1.

Качество дробного факторного плана иногда характеризуют с помощью разрешающей способности плана, которая равна наименьшему числу символов в правых частях определяющих соотношений. В частности, для плана разрешающей способности III ни один главный эффект не смешан ни с каким другим главным эффектом, но главные эффекты смешаны с эффектами двухфакторных взаимодействий. Для плана разрешающей способности IV главные эффекты не смешаны друг с другом и с эффектами двухфакторных взаимодействий, но последние друг с другом смешаны. Для плана разрешающей способности V главные эффекты и эффекты двухфакторных взаимодействий не смешаны, но последние смешаны с эффектами трехфакторных взаимодействий. Все три рассмотренные выше дробные реплики имеют разрешающую способность III.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]