Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Modeling of processes in technosphere.doc
Скачиваний:
47
Добавлен:
20.11.2019
Размер:
11.37 Mб
Скачать

15.2 Сети одномерных конечных элементов

На рис. 3 приведены примеры из различных предметных областей с одинаковой топологией с точки зрения теории графов, имеющие одинаковый принцип построения математической модели на основе МКЭ.

На рис. 3, а показана электрическая схема из семи резисторов. Источники питания на схеме не показаны, но их влияние характеризуется токами

Если резистор рассмотреть изолированно от системы, то с помощью закона Ома можно записать соотношение между исходящими токами и напряжениями на его концах:

(11)

или в матричной форме

(12)

(12 а)

Узлы сети и ее элементы можно нумеровать произвольно, однако при выделении каждого элемента условимся под индексом i всегда понимать меньший номер. Нетрудно видеть, что поэтому силу тока в узле i можно определять по формуле

(13)

а если рассматривается узел , то правую часть формулы (13) следует умножить на -1.

а) электрическая; б) механическая; в) гидравлическая

Рис. 3 Сети одномерных конечных элементов:

При составлении ансамбля конечных элементов запишем уравнения «равновесия» (закон Кирхгофа) поочередно для каждого узла. Для формализации процедуры будем рассматривать все элементы сети независимо от того, примыкают они к данному узлу или нет. Если элемент примыкает к рассматриваемому узлу своим началом, будем принимать равенство (13) со своим знаком, т. е. умножать его на 1. Если это окажется конец элемента, то будем вводить множитель – 1. Если элемент не примыкает к узлу, то принимать множитель 0. С целью сокращения записей условимся матрицу жесткости обозначать буквой К, снабженной индексом, указывающим номер элемента. Для первого узла (рис. 3, а) будем иметь:

для второго узла

Поступая аналогично с остальными узлами, можем записать математическую модель электрической системы:

(14)

При рассмотрении элементов анализа сетей было дано определение и указан прием построения матрицы инциденций ориентированного графа. Здесь мы получили такую матрицу, занумерованные узлы и элементы сети.

Перейдем к рассмотрению механической системы (рис. 3, 6) в виде фермы, загруженной силой Р. Предварительно отметим существенное отличие этой системы от ранее рассмотренной. В электрической системе сила тока есть скалярная величина, поэтому не имеет значения пространственное расположение резисторов, важен лишь факт их примыкания к данному узлу. Для фермы все иначе: здесь имеет значение не только топология, но и геометрия фермы, а также ориентация внешних сил и реакций связей. Для плоской фермы с шарнирными узлами каждый узел имеет две степени свободы, что определяет 10 степеней свободы для всей совокупности узлов. Однако внешние связи исключают две степени свободы в первом узле и по одной (в вертикальном направлении) – в 4 и 5 узлах. Для учета этого обстоятельства необходимо вычеркнуть соответствующие строки матрицы S, характеризующей степени свободы системы (две строки для первого узла и вторые строки – для 4 и 5 узлов):

(15)

При рассмотрении конечного элемента для электрической системы основным параметром, определяющим связь между фазовыми переменными I и U, было электрическое сопротивление резистора r, а сама связь устанавливалась законом Ома.

В случае фермы фазовыми переменными будут усилия в стержнях N и удлинения стержней , параметром – погонная жесткость , а связь переменных состояния определится законом Гука

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]