Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фатыхов М.А. Лекции по механикe.doc
Скачиваний:
467
Добавлен:
18.03.2015
Размер:
3.38 Mб
Скачать

2. Динамика колебательного движения

Пусть материальная точка совершает прямолинейные гармонические колебания вдоль оси координат х около положения равновесия, принятого за начало координат. Тогда зависимость координаты х от времени t задается, например, формулой .

В этом случае, как видно из формулы (11.8), при колебательном движении ускорение переменно. Следовательно, движение обусловлено действием переменной силы. Пусть под действием переменной силы материальная точка массойm совершает гармоническое колебание с ускорением а. Тогда, , так как.

Следовательно, сила пропорциональна смещению материальной точки из положения равновесия и направлена в противоположную сторону (к положению равновесия). Эта сила стремится возвратить точку в положение равновесия, поэтому ее называют возвращающей силой. Возвращающей силой может быть, например, сила упругости, так как она тоже пропорциональна смещению и противоположна ему по знаку. Возвращающие силы могут иметь не только упругую, но и другую природу. В таких случаях они называются квазиупругими силами.

Кинетическая энергия материальной точки, совершающей прямолинейные гармонические колебания, равна

(11.10)

или (11.11)

Потенциальная энергия материальной точки, совершающей гармонические колебания под действием упругой силы F, равна

(11.12)

или (11.13)

Сложив (11.11) и (11.13), получим формулу для полной энергии:

(11.14)

Полная энергия остается постоянной, так как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.

Из формул (11.11) и (11.13) следует, что и изменяются с частотой , т.е. с частотой, которая в два раза превышает частоту гармонического колебания.

На рис. 11.3 представлены графики зависимости х, Еки Ер =II от времени. Так как средние значения <sin2a> = <cos2a> =1/2, то из формул (11.11), (11.13) и (11.14) следует, что средние значения .

Рис.11.3

3. Гармонический осциллятор. Пружинный, физический и математический маятники

Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнением вида

(11.15)

Колебания гармонического осциллятора являются важным примером периодического движения и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур.

1. Пружинный маятник – это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы , где k – коэффициент упругости, в случае пружины называемый жесткостью.

Уравнение движения маятника или

Из его решения следует, что пружинный маятник совершает гармонические колебания по закону с циклической частотой

(11.16)

и периодом

(11.17)

Формула (11.17) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука, т.е. когда масса пружины мала по сравнению с массой тела.

Потенциальная энергия пружинного маятника согласно (11.12) и (11.16) равна .

2. Физический маятник – это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс С тела (рис. 11.4).

Рис. 11.4

Пусть физический маятник совершает колебания вокруг неподвижной точки О. Обозначим массу маятника через m, длину маятника ОС, т.е. расстояние между точкой подвеса и центром масс маятника через . Действуют две силы: сила тяжести, приложенная к центру масс твердого тела С, и сила реакции опоры, приложенная к точке О.

Если маятник отклонен из положения равновесия на некоторый угол а, то он под действием силы тяжести возвращается к положению равновесия, переходит его по инерции, отклоняется в противоположную сторону, затем опять переходит в положение равновесия и т.д. Центр тяжести маятника будет описывать дугу окружности. Возвращающая сила равна (знак минус обусловлен тем, что направления и всегда противоположны). При малых отклонениях ()

В соответствии с уравнением динамики вращательного движения твердого тела момент М возвращающей силы можно записать в виде

(11.18)

где – момент инерции маятника относительно оси, проходящей через точкуО.

Таким образом, уравнение движения физического маятника можно записать в виде или

(11.19)

Обозначим (11.20)

Получим уравнение

(11.21)

Оно идентично с (11.15). Следовательно, решение его известно:

(11.22)

Из выражения (11.22) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой и периодом

(11.23)

В этой формуле приведенная длина физического маятника.

Точка О' на продолжении прямой ОС, отстоящая от оси подвеса на расстоянии приведенной длины L, называется центром качаний физического маятника. Применяя теорему Штейнера, получим , т.е.00' всегда больше ОС. Точка подвеса О и центр качаний О' обладают свойством взаимозаменяемости: если ось подвеса перенести в центр качаний, то точка О прежней оси подвеса станет новым центром качаний и период колебаний физического маятника не изменится.

3. Математический маятник – это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити.

Пусть длина маятника равна . Тогда момент инерции математического маятника есть

(11.24)

Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке – центре масс, то, подставив выражение (11.24) в формулу (11.23), получим выражение для периода малых колебаний математического маятника

(11.25)

Сравнивая формулы (11.23) и (11.25), видим, что если приведенная длина L физического маятника равна длине математического маятника, то их периоды колебаний одинаковы. Следовательно, приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника.